customize.py 9.11 KB
Newer Older
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import math
import torch
from torch.autograd import Variable
from torch.nn import Module
from torch.nn import functional as F
from torch.nn.parameter import Parameter

from ..parallel import my_data_parallel
from .syncbn import BatchNorm2d
from ..functions import dilatedavgpool2d

__all__ = ['DilatedAvgPool2d', 'MyConvTranspose2d', 'View', 'Normalize',
    'Bottleneck']

class DilatedAvgPool2d(Module):
    r"""We provide Dilated Average Pooling for the dilation of Densenet as
    in :class:`encoding.dilated.DenseNet`.

    Applies a 2D average pooling over an input signal composed of several input planes.

    In the simplest case, the output value of the layer with input size :math:`(N, C, H, W)`,
    output :math:`(N, C, H_{out}, W_{out})` and :attr:`kernel_size` :math:`(kH, kW)`
    can be precisely described as:

    .. math::

        \begin{array}{ll}
        out(b, c, h, w)  = 1 / (kH * kW) * 
        \sum_{{m}=0}^{kH-1} \sum_{{n}=0}^{kW-1}
        input(b, c, dH * h + m, dW * w + n)
        \end{array}

    | If :attr:`padding` is non-zero, then the input is implicitly zero-padded on both sides
      for :attr:`padding` number of points

    The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`dilation` can either be:

        - a single ``int`` -- in which case the same value is used for the height and width dimension
        - a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension,
          and the second `int` for the width dimension

    Args:
        kernel_size: the size of the window
        stride: the stride of the window. Default value is :attr:`kernel_size`
        padding: implicit zero padding to be added on both sides
        dilation: the dilation parameter similar to Conv2d

    Shape:
        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})` where
          :math:`H_{out} = floor((H_{in}  + 2 * padding[0] - kernel\_size[0]) / stride[0] + 1)`
          :math:`W_{out} = floor((W_{in}  + 2 * padding[1] - kernel\_size[1]) / stride[1] + 1)`

    Examples::

        >>> # pool of square window of size=3, stride=2, dilation=2
        >>> m = nn.DilatedAvgPool2d(3, stride=2, dilation=2)
        >>> input = autograd.Variable(torch.randn(20, 16, 50, 32))
        >>> output = m(input)

    Reference::
        comming 
    """
    def __init__(self, kernel_size, stride=None, padding=0, dilation=1):
        super(DilatedAvgPool2d, self).__init__()
        self.kernel_size = kernel_size
        self.stride = stride or kernel_size
        self.padding = padding
        self.dilation = dilation

    def forward(self, input):
        return dilatedavgpool2d(input, self.kernel_size, self.stride,
                                self.padding, self.dilation)

    def __repr__(self):
        return self.__class__.__name__ + ' (' \
            + 'size=' + str(self.kernel_size) \
            + ', stride=' + str(self.stride) \
            + ', padding=' + str(self.padding) \
            + ', dilation=' + str(self.dilation) + ')'


class MyConvTranspose2d(Module):
    """Customized Layers, discuss later
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, scale_factor =1, 
                 bias=True):
        super(MyConvTranspose2d, self).__init__()
        kernel_size = _pair(kernel_size)
        stride = _pair(stride)
        padding = _pair(padding)
        dilation = _pair(dilation)
        if in_channels % groups != 0:
            raise ValueError('in_channels must be divisible by groups')
        if out_channels % groups != 0:
            raise ValueError('out_channels must be divisible by groups')
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups
        self.scale_factor = scale_factor
        self.weight = Parameter(torch.Tensor(
            out_channels * scale_factor * scale_factor, 
            in_channels // groups, *kernel_size))
        if bias:
            self.bias = Parameter(torch.Tensor(out_channels * 
                scale_factor * scale_factor))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self):
        n = self.in_channels
        for k in self.kernel_size:
            n *= k
        stdv = 1. / math.sqrt(n)
        self.weight.data.uniform_(-stdv, stdv)
        if self.bias is not None:
            self.bias.data.uniform_(-stdv, stdv)

    def forward(self, input):
        if isinstance(input, Variable):
            out = F.conv2d(input, self.weight, self.bias, self.stride,
                            self.padding, self.dilation, self.groups)
            return F.pixel_shuffle(out, self.scale_factor)
        elif isinstance(input, tuple) or isinstance(input, list):
            return my_data_parallel(self, input)
        else:
            raise RuntimeError('unknown input type')


class View(Module):
    """Reshape the input into different size, an inplace operator, support
    SelfParallel mode.
    """
    def __init__(self, *args):
        super(View, self).__init__()
        if len(args) == 1 and isinstance(args[0], torch.Size):
            self.size = args[0]
        else:
            self.size = torch.Size(args)

    def forward(self, input):
        if isinstance(input, Variable):
            return input.view(self.size)
        elif isinstance(input, tuple) or isinstance(input, list):
            return view_each(input, self.size)
        else:
            raise RuntimeError('unknown input type')


class Normalize(Module):
    r"""Performs :math:`L_p` normalization of inputs over specified dimension.

    Does:

    .. math::
        v = \frac{v}{\max(\lVert v \rVert_p, \epsilon)}

    for each subtensor v over dimension dim of input. Each subtensor is
    flattened into a vector, i.e. :math:`\lVert v \rVert_p` is not a matrix
    norm.

    With default arguments normalizes over the second dimension with Euclidean
    norm.

    Args:
        p (float): the exponent value in the norm formulation. Default: 2
        dim (int): the dimension to reduce. Default: 1
    """
    def __init__(self, p=2, dim=1):
        super(Normalize, self).__init__()
        self.p = p
        self.dim =dim

    def forward(self, x):
        if isinstance(x, Variable):
            return F.normalize(x, self.p, self.dim)
        elif isinstance(x, tuple) or isinstance(x, list):
            return my_data_parallel(self, x)
        else:
            raise RuntimeError('unknown input type')


class Bottleneck(Module):
    """ Pre-activation residual block
    Identity Mapping in Deep Residual Networks
    ref https://arxiv.org/abs/1603.05027
    """
    def __init__(self, inplanes, planes, stride=1,
            norm_layer=BatchNorm2d):
        super(Bottleneck, self).__init__()
        self.expansion = 4
        if inplanes != planes*self.expansion or stride !=1 :
            self.downsample = True
            self.residual_layer = Conv2d(inplanes, planes * self.expansion,
                                                        kernel_size=1, stride=stride)
        else:
            self.downsample = False
        conv_block = []
        conv_block += [norm_layer(inplanes),
                       ReLU(inplace=True),
                       Conv2d(inplanes, planes, kernel_size=1, stride=1)]
        conv_block += [norm_layer(planes),
                       ReLU(inplace=True),
                       Conv2d(planes, planes, kernel_size=3, stride=stride,
                           padding=1)]
        conv_block += [norm_layer(planes),
                       ReLU(inplace=True),
                       Conv2d(planes, planes * self.expansion, kernel_size=1,
                           stride=1)]
        self.conv_block = Sequential(*conv_block)
        
    def forward(self, x):
        if self.downsample:
            residual = self.residual_layer(x)
        else:
            residual = x
        if isinstance(x, Variable):
            return residual + self.conv_block(x)
        elif isinstance(x, tuple) or isinstance(x, list):
            return sum_each(residual, self.conv_block(x))
        else:
            raise RuntimeError('unknown input type')


def _get_a_var(obj):
    if isinstance(obj, Variable):
        return obj

    if isinstance(obj, list) or isinstance(obj, tuple):
        results = map(_get_a_var, obj)
        for result in results:
            if isinstance(result, Variable):
                return result
    if isinstance(obj, dict):
        results = map(_get_a_var, obj.items())
        for result in results:
            if isinstance(result, Variable):
                return result
    return None