basic.py 32.4 KB
Newer Older
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import math
import torch
from torch.autograd import Variable
from torch.nn import Module, Sequential
from torch.nn import functional as F
from torch.nn.parameter import Parameter
from torch.nn.modules.utils import _single, _pair, _triple

from ..parallel import my_data_parallel
from ..functions import view_each

__all__ = ['Module', 'Sequential', 'Conv1d', 'Conv2d', 'ConvTranspose2d', 'ReLU', 'Sigmoid', 'MaxPool2d', 'AvgPool2d', 'AdaptiveAvgPool2d', 'Dropout2d', 'Linear']

class _ConvNd(Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride,
                 padding, dilation, transposed, output_padding, groups, bias):
        super(_ConvNd, self).__init__()
        if in_channels % groups != 0:
            raise ValueError('in_channels must be divisible by groups')
        if out_channels % groups != 0:
            raise ValueError('out_channels must be divisible by groups')
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.transposed = transposed
        self.output_padding = output_padding
        self.groups = groups
        if transposed:
            self.weight = Parameter(torch.Tensor(
                in_channels, out_channels // groups, *kernel_size))
        else:
            self.weight = Parameter(torch.Tensor(
                out_channels, in_channels // groups, *kernel_size))
        if bias:
            self.bias = Parameter(torch.Tensor(out_channels))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self):
        n = self.in_channels
        for k in self.kernel_size:
            n *= k
        stdv = 1. / math.sqrt(n)
        self.weight.data.uniform_(-stdv, stdv)
        if self.bias is not None:
            self.bias.data.uniform_(-stdv, stdv)

    def __repr__(self):
        s = ('{name}({in_channels}, {out_channels}, kernel_size={kernel_size}'
             ', stride={stride}')
        if self.padding != (0,) * len(self.padding):
            s += ', padding={padding}'
        if self.dilation != (1,) * len(self.dilation):
            s += ', dilation={dilation}'
        if self.output_padding != (0,) * len(self.output_padding):
            s += ', output_padding={output_padding}'
        if self.groups != 1:
            s += ', groups={groups}'
        if self.bias is None:
            s += ', bias=False'
        s += ')'
        return s.format(name=self.__class__.__name__, **self.__dict__)


class Conv1d(_ConvNd):
    r"""Applies a 1D convolution over an input signal composed of several input
    planes.
    In the simplest case, the output value of the layer with input size
    :math:`(N, C_{in}, L)` and output :math:`(N, C_{out}, L_{out})` can be
    precisely described as:
    .. math::
        \begin{array}{ll}
        out(N_i, C_{out_j})  = bias(C_{out_j})
                       + \sum_{{k}=0}^{C_{in}-1} weight(C_{out_j}, k)  \star input(N_i, k)
        \end{array}
    where :math:`\star` is the valid `cross-correlation`_ operator

    | :attr:`stride` controls the stride for the cross-correlation.
    | If :attr:`padding` is non-zero, then the input is implicitly zero-padded on both sides for :attr:`padding` number of points.
    | :attr:`dilation` controls the spacing between the kernel points; also
      known as the à trous algorithm. It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does.
    | :attr:`groups` controls the connections between inputs and outputs. `in_channels` and `out_channels` must both be divisible by `groups`.
    |       At groups=1, all inputs are convolved to all outputs.
    |       At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
            At groups=`in_channels`, each input channel is convolved with its own set of filters (of size `out_channels // in_channels`).

    Args:
        in_channels (int): Number of channels in the input image
        out_channels (int): Number of channels produced by the convolution
        kernel_size (int or tuple): Size of the convolving kernel
        stride (int or tuple, optional): Stride of the convolution. Default: 1
        padding (int or tuple, optional): Zero-padding added to both sides of
            the input. Default: 0
        dilation (int or tuple, optional): Spacing between kernel
            elements. Default: 1
        groups (int, optional): Number of blocked connections from input
            channels to output channels. Default: 1
        bias (bool, optional): If True, adds a learnable bias to the output. Default: True

    Shape:
        - Input: :math:`(N, C_{in}, L_{in})`
        - Output: :math:`(N, C_{out}, L_{out})` where
          :math:`L_{out} = floor((L_{in}  + 2 * padding - dilation * (kernel\_size - 1) - 1) / stride + 1)`

    Attributes:
        weight (Tensor): the learnable weights of the module of shape
            (out_channels, in_channels, kernel_size)
        bias (Tensor):   the learnable bias of the module of shape
            (out_channels)

    Examples::
        >>> m = nn.Conv1d(16, 33, 3, stride=2)
        >>> input = autograd.Variable(torch.randn(20, 16, 50))
        >>> output = m(input)

    .. _cross-correlation:
        https://en.wikipedia.org/wiki/Cross-correlation
    .. _link:
        https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

    """

    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, bias=True):
        kernel_size = _single(kernel_size)
        stride = _single(stride)
        padding = _single(padding)
        dilation = _single(dilation)
        super(Conv1d, self).__init__(
            in_channels, out_channels, kernel_size, stride, padding, dilation,
            False, _single(0), groups, bias)

    def forward(self, input):
        return F.conv1d(input, self.weight, self.bias, self.stride,
                        self.padding, self.dilation, self.groups)


class Conv2d(_ConvNd):
    r"""Applies a 2D convolution over an input signal composed of several input
    planes.
    In the simplest case, the output value of the layer with input size
    :math:`(N, C_{in}, H, W)` and output :math:`(N, C_{out}, H_{out}, W_{out})`
    can be precisely described as:
    .. math::
        \begin{array}{ll}
        out(N_i, C_{out_j})  = bias(C_{out_j})
                       + \sum_{{k}=0}^{C_{in}-1} weight(C_{out_j}, k)  \star input(N_i, k)
        \end{array}
    where :math:`\star` is the valid 2D `cross-correlation`_ operator

    | :attr:`stride` controls the stride for the cross-correlation.
    | If :attr:`padding` is non-zero, then the input is implicitly zero-padded on both sides for :attr:`padding` number of points.
    | :attr:`dilation` controls the spacing between the kernel points; also
      known as the à trous algorithm. It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does.
    | :attr:`groups` controls the connections between inputs and outputs. `in_channels` and `out_channels` must both be divisible by `groups`.
    |       At groups=1, all inputs are convolved to all outputs.
    |       At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
            At groups=`in_channels`, each input channel is convolved with its own set of filters (of size `out_channels // in_channels`).

    The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`dilation` can either be:
        - a single ``int`` -- in which case the same value is used for the height and width dimension
        - a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension,
          and the second `int` for the width dimension

    Args:
        in_channels (int): Number of channels in the input image
        out_channels (int): Number of channels produced by the convolution
        kernel_size (int or tuple): Size of the convolving kernel
        stride (int or tuple, optional): Stride of the convolution. Default: 1
        padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
        dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
        bias (bool, optional): If True, adds a learnable bias to the output. Default: True

    Shape:
        - Input: :math:`(N, C_{in}, H_{in}, W_{in})`
        - Output: :math:`(N, C_{out}, H_{out}, W_{out})` where
          :math:`H_{out} = floor((H_{in}  + 2 * padding[0] - dilation[0] * (kernel\_size[0] - 1) - 1) / stride[0] + 1)`
          :math:`W_{out} = floor((W_{in}  + 2 * padding[1] - dilation[1] * (kernel\_size[1] - 1) - 1) / stride[1] + 1)`

    Attributes:
        weight (Tensor): the learnable weights of the module of shape
                         (out_channels, in_channels, kernel_size[0], kernel_size[1])
        bias (Tensor):   the learnable bias of the module of shape (out_channels)

    Examples::
        >>> # With square kernels and equal stride
        >>> m = nn.Conv2d(16, 33, 3, stride=2)
        >>> # non-square kernels and unequal stride and with padding
        >>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
        >>> # non-square kernels and unequal stride and with padding and dilation
        >>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))
        >>> input = autograd.Variable(torch.randn(20, 16, 50, 100))
        >>> output = m(input)

    .. _cross-correlation:
        https://en.wikipedia.org/wiki/Cross-correlation
    .. _link:
        https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

    """
    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, bias=True):
        kernel_size = _pair(kernel_size)
        stride = _pair(stride)
        padding = _pair(padding)
        dilation = _pair(dilation)
        super(Conv2d, self).__init__(
            in_channels, out_channels, kernel_size, stride, padding, dilation,
            False, _pair(0), groups, bias)

    def forward(self, input):
        if isinstance(input, Variable):
            return F.conv2d(input, self.weight, self.bias, self.stride,
                            self.padding, self.dilation, self.groups)
        elif isinstance(input, tuple) or isinstance(input, list):
            return my_data_parallel(self, input)
        else:
            raise RuntimeError('unknown input type')


class _ConvTransposeMixin(object):
    def forward(self, input, output_size=None):
        output_padding = self._output_padding(input, output_size)
        func = self._backend.ConvNd(
            self.stride, self.padding, self.dilation, self.transposed,
            output_padding, self.groups)
        if self.bias is None:
            return func(input, self.weight)
        else:
            return func(input, self.weight, self.bias)

    def _output_padding(self, input, output_size):
        if output_size is None:
            return self.output_padding

        output_size = list(output_size)
        k = input.dim() - 2
        if len(output_size) == k + 2:
            output_size = output_size[-2:]
        if len(output_size) != k:
            raise ValueError(
                "output_size must have {} or {} elements (got {})"
                .format(k, k + 2, len(output_size)))

        def dim_size(d):
            return ((input.size(d + 2) - 1) * self.stride[d] -
                    2 * self.padding[d] + self.kernel_size[d])

        min_sizes = [dim_size(d) for d in range(k)]
        max_sizes = [min_sizes[d] + self.stride[d] - 1 for d in range(k)]
        for size, min_size, max_size in zip(output_size, min_sizes, max_sizes):
            if size < min_size or size > max_size:
                raise ValueError((
                    "requested an output size of {}, but valid sizes range "
                    "from {} to {} (for an input of {})").format(
                        output_size, min_sizes, max_sizes, input.size()[2:]))

        return tuple([output_size[d] - min_sizes[d] for d in range(k)])


class ConvTranspose2d(_ConvTransposeMixin, _ConvNd):
    r"""Applies a 2D transposed convolution operator over an input image
    composed of several input planes.
    This module can be seen as the gradient of Conv2d with respect to its input.
    It is also known as a fractionally-strided convolution or
    a deconvolution (although it is not an actual deconvolution operation).

    | :attr:`stride` controls the stride for the cross-correlation.
    | If :attr:`padding` is non-zero, then the input is implicitly zero-padded on both sides for :attr:`padding` number of points.
    | If :attr:`output_padding` is non-zero, then the output is implicitly zero-padded on one side for :attr:`output_padding` number of points.
    | :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does.
    | :attr:`groups` controls the connections between inputs and outputs. `in_channels` and `out_channels` must both be divisible by `groups`.
    |       At groups=1, all inputs are convolved to all outputs.
    |       At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
            At groups=`in_channels`, each input channel is convolved with its own set of filters (of size `out_channels // in_channels`).

    The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`output_padding` can either be:
        - a single ``int`` -- in which case the same value is used for the height and width dimensions
        - a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension,
          and the second `int` for the width dimension

    Args:
        in_channels (int): Number of channels in the input image
        out_channels (int): Number of channels produced by the convolution
        kernel_size (int or tuple): Size of the convolving kernel
        stride (int or tuple, optional): Stride of the convolution. Default: 1
        padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
        output_padding (int or tuple, optional): Zero-padding added to one side of the output. Default: 0
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
        bias (bool, optional): If True, adds a learnable bias to the output. Default: True
        dilation (int or tuple, optional): Spacing between kernel elements. Default: 1

    Shape:
        - Input: :math:`(N, C_{in}, H_{in}, W_{in})`
        - Output: :math:`(N, C_{out}, H_{out}, W_{out})` where
          :math:`H_{out} = (H_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size[0] + output\_padding[0]`
          :math:`W_{out} = (W_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size[1] + output\_padding[1]`

    Attributes:
        weight (Tensor): the learnable weights of the module of shape
                         (in_channels, out_channels, kernel_size[0], kernel_size[1])
        bias (Tensor):   the learnable bias of the module of shape (out_channels)

    Examples::
        >>> # With square kernels and equal stride
        >>> m = nn.ConvTranspose2d(16, 33, 3, stride=2)
        >>> # non-square kernels and unequal stride and with padding
        >>> m = nn.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
        >>> input = autograd.Variable(torch.randn(20, 16, 50, 100))
        >>> output = m(input)
        >>> # exact output size can be also specified as an argument
        >>> input = autograd.Variable(torch.randn(1, 16, 12, 12))
        >>> downsample = nn.Conv2d(16, 16, 3, stride=2, padding=1)
        >>> upsample = nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1)
        >>> h = downsample(input)
        >>> h.size()
        torch.Size([1, 16, 6, 6])
        >>> output = upsample(h, output_size=input.size())
        >>> output.size()
        torch.Size([1, 16, 12, 12])

    .. _cross-correlation:
        https://en.wikipedia.org/wiki/Cross-correlation
    .. _link:
        https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, output_padding=0, groups=1, bias=True, 
                 dilation=1):
        kernel_size = _pair(kernel_size)
        stride = _pair(stride)
        padding = _pair(padding)
        dilation = _pair(dilation)
        output_padding = _pair(output_padding)
        super(ConvTranspose2d, self).__init__(
            in_channels, out_channels, kernel_size, stride, padding, dilation,
            True, output_padding, groups, bias)

    def forward(self, input, output_size=None):
        output_padding = self._output_padding(input, output_size)
        if isinstance(input, Variable):
            return F.conv_transpose2d(
                input, self.weight, self.bias, self.stride, self.padding,
                output_padding, self.groups, self.dilation)
        elif isinstance(input, tuple) or isinstance(input, list):
            return my_data_parallel(self, input)
        else:
            raise RuntimeError('unknown input type')


class Threshold(Module):
    def __init__(self, threshold, value, inplace=False):
        super(Threshold, self).__init__()
        self.threshold = threshold
        self.value = value
        self.inplace = inplace

    def forward(self, input):
        if isinstance(input, Variable):
            return F.threshold(input, self.threshold, self.value, 
                               self.inplace)
        elif isinstance(input, tuple) or isinstance(input, list):
            return my_data_parallel(self, input)
        else:
            raise RuntimeError('unknown input type')

    def __repr__(self):
        inplace_str = ', inplace' if self.inplace else ''
        return self.__class__.__name__ + ' (' \
            + str(self.threshold) \
            + ', ' + str(self.value) \
            + inplace_str + ')'


class ReLU(Threshold):
    """Applies the rectified linear unit function element-wise
    :math:`{ReLU}(x)= max(0, x)`
    Args:
        inplace: can optionally do the operation in-place. Default: False
    Shape:
        - Input: :math:`(N, *)` where `*` means, any number of additional
          dimensions
        - Output: :math:`(N, *)`, same shape as the input
    Examples::
        >>> m = nn.ReLU()
        >>> input = autograd.Variable(torch.randn(2))
        >>> print(input)
        >>> print(m(input))
    """
    def __init__(self, inplace=False):
        super(ReLU, self).__init__(0, 0, inplace)

    def __repr__(self):
        inplace_str = 'inplace' if self.inplace else ''
        return self.__class__.__name__ + ' (' \
            + inplace_str + ')'


class Sigmoid(Module):
    """Applies the element-wise function :math:`f(x) = 1 / ( 1 + exp(-x))`
    Shape:
        - Input: :math:`(N, *)` where `*` means, any number of additional
          dimensions
        - Output: :math:`(N, *)`, same shape as the input
    Examples::
        >>> m = nn.Sigmoid()
        >>> input = autograd.Variable(torch.randn(2))
        >>> print(input)
        >>> print(m(input))
    """
    def forward(self, input):
        if isinstance(input, Variable):
            return torch.sigmoid(input)
        elif isinstance(input, tuple) or isinstance(input, list):
            return my_data_parallel(self, input)
        else:
            raise RuntimeError('unknown input type')

    def __repr__(self):
        return self.__class__.__name__ + ' ()'


class MaxPool2d(Module):
    r"""Applies a 2D max pooling over an input signal composed of several input
    planes.
    In the simplest case, the output value of the layer with input size :math:`(N, C, H, W)`,
    output :math:`(N, C, H_{out}, W_{out})` and :attr:`kernel_size` :math:`(kH, kW)`
    can be precisely described as:

    .. math::
        \begin{array}{ll}
        out(N_i, C_j, h, w)  = \max_{{m}=0}^{kH-1} \max_{{n}=0}^{kW-1}
                               input(N_i, C_j, stride[0] * h + m, stride[1] * w + n)
        \end{array}

    | If :attr:`padding` is non-zero, then the input is implicitly zero-padded on both sides
      for :attr:`padding` number of points
    | :attr:`dilation` controls the spacing between the kernel points. It is harder to describe,
      but this `link`_ has a nice visualization of what :attr:`dilation` does.
    The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`dilation` can either be:
        - a single ``int`` -- in which case the same value is used for the height and width dimension
        - a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension,
          and the second `int` for the width dimension

    Args:
        kernel_size: the size of the window to take a max over
        stride: the stride of the window. Default value is :attr:`kernel_size`
        padding: implicit zero padding to be added on both sides
        dilation: a parameter that controls the stride of elements in the window
        return_indices: if True, will return the max indices along with the outputs.
                        Useful when Unpooling later
        ceil_mode: when True, will use `ceil` instead of `floor` to compute the output shape

    Shape:
        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})` where
          :math:`H_{out} = floor((H_{in}  + 2 * padding[0] - dilation[0] * (kernel\_size[0] - 1) - 1) / stride[0] + 1)`
          :math:`W_{out} = floor((W_{in}  + 2 * padding[1] - dilation[1] * (kernel\_size[1] - 1) - 1) / stride[1] + 1)`
    Examples::
        >>> # pool of square window of size=3, stride=2
        >>> m = nn.MaxPool2d(3, stride=2)
        >>> # pool of non-square window
        >>> m = nn.MaxPool2d((3, 2), stride=(2, 1))
        >>> input = autograd.Variable(torch.randn(20, 16, 50, 32))
        >>> output = m(input)

    .. _link:
        https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

    """
    def __init__(self, kernel_size, stride=None, padding=0, dilation=1,
                 return_indices=False, ceil_mode=False):
        super(MaxPool2d, self).__init__()
        self.kernel_size = kernel_size
        self.stride = stride or kernel_size
        self.padding = padding
        self.dilation = dilation
        self.return_indices = return_indices
        self.ceil_mode = ceil_mode

    def forward(self, input):
        if isinstance(input, Variable):
            return F.max_pool2d(input, self.kernel_size, self.stride, \
                self.padding, self.dilation, self.ceil_mode, \
                self.return_indices)
        elif isinstance(input, tuple) or isinstance(input, list):
            return my_data_parallel(self, input)
        else:
            raise RuntimeError('unknown input type')

    def __repr__(self):
        kh, kw = _pair(self.kernel_size)
        dh, dw = _pair(self.stride)
        padh, padw = _pair(self.padding)
        dilh, dilw = _pair(self.dilation)
        padding_str = ', padding=(' + str(padh) + ', ' + str(padw) + ')' \
            if padh != 0 and padw != 0 else ''
        dilation_str = (', dilation=(' + str(dilh) + ', ' + str(dilw) + ')'
                        if dilh != 0 and dilw != 0 else '')
        return self.__class__.__name__ + ' (' \
            + 'size=(' + str(kh) + ', ' + str(kw) + ')' \
            + ', stride=(' + str(dh) + ', ' + str(dw) + ')' \
            + padding_str + dilation_str + ')'


class AvgPool2d(Module):
    r"""Applies a 2D average pooling over an input signal composed of several input
    planes.
    In the simplest case, the output value of the layer with input size :math:`(N, C, H, W)`,
    output :math:`(N, C, H_{out}, W_{out})` and :attr:`kernel_size` :math:`(kH, kW)`
    can be precisely described as:

    .. math::
        \begin{array}{ll}
        out(N_i, C_j, h, w)  = 1 / (kH * kW) * \sum_{{m}=0}^{kH-1} \sum_{{n}=0}^{kW-1}
                               input(N_i, C_j, stride[0] * h + m, stride[1] * w + n)
        \end{array}

    | If :attr:`padding` is non-zero, then the input is implicitly zero-padded on both sides
      for :attr:`padding` number of points
    The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding` can either be:
        - a single ``int`` -- in which case the same value is used for the height and width dimension
        - a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension,
          and the second `int` for the width dimension

    Args:
        kernel_size: the size of the window
        stride: the stride of the window. Default value is :attr:`kernel_size`
        padding: implicit zero padding to be added on both sides
        ceil_mode: when True, will use `ceil` instead of `floor` to compute the output shape
        count_include_pad: when True, will include the zero-padding in the averaging calculation

    Shape:
        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})` where
          :math:`H_{out} = floor((H_{in}  + 2 * padding[0] - kernel\_size[0]) / stride[0] + 1)`
          :math:`W_{out} = floor((W_{in}  + 2 * padding[1] - kernel\_size[1]) / stride[1] + 1)`

    Examples::
        >>> # pool of square window of size=3, stride=2
        >>> m = nn.AvgPool2d(3, stride=2)
        >>> # pool of non-square window
        >>> m = nn.AvgPool2d((3, 2), stride=(2, 1))
        >>> input = autograd.Variable(torch.randn(20, 16, 50, 32))
        >>> output = m(input)

    """
    def __init__(self, kernel_size, stride=None, padding=0, ceil_mode=False,
                 count_include_pad=True):
        super(AvgPool2d, self).__init__()
        self.kernel_size = kernel_size
        self.stride = stride or kernel_size
        self.padding = padding
        self.ceil_mode = ceil_mode
        self.count_include_pad = count_include_pad

    def forward(self, input):
        if isinstance(input, Variable):
            return F.avg_pool2d(input, self.kernel_size, self.stride,
                                self.padding, self.ceil_mode, self.count_include_pad)
        elif isinstance(input, tuple) or isinstance(input, list):
            return my_data_parallel(self, input)
        else:
            raise RuntimeError('unknown input type')


class AdaptiveAvgPool2d(Module):
    """Applies a 2D adaptive average pooling over an input signal composed of several input planes.
    The output is of size H x W, for any input size.
    The number of output features is equal to the number of input planes.

    Args:
        output_size: the target output size of the image of the form H x W.
                     Can be a tuple (H, W) or a single number H for a square image H x H

    Examples:
        >>> # target output size of 5x7
        >>> m = nn.AdaptiveAvgPool2d((5,7))
        >>> input = autograd.Variable(torch.randn(1, 64, 8, 9))
        >>> output = m(input)
        >>> # target output size of 7x7 (square)
        >>> m = nn.AdaptiveAvgPool2d(7)
        >>> input = autograd.Variable(torch.randn(1, 64, 10, 9))
        >>> output = m(input)

    """
    def __init__(self, output_size):
        super(AdaptiveAvgPool2d, self).__init__()
        self.output_size = output_size

    def forward(self, input):
        if isinstance(input, Variable):
            return F.adaptive_avg_pool2d(input, self.output_size)
        elif isinstance(input, tuple) or isinstance(input, list):
            return my_data_parallel(self, input)
        else:
            raise RuntimeError('unknown input type')

    def __repr__(self):
        return self.__class__.__name__ + ' (' \
            + 'output_size=' + str(self.output_size) + ')'


class Dropout2d(Module):
    r"""Randomly zeroes whole channels of the input tensor.
    The channels to zero-out are randomized on every forward call.
    *Usually the input comes from Conv2d modules.*
    As described in the paper
    `Efficient Object Localization Using Convolutional Networks`_ ,
    if adjacent pixels within feature maps are strongly correlated
    (as is normally the case in early convolution layers) then iid dropout
    will not regularize the activations and will otherwise just result
    in an effective learning rate decrease.
    In this case, :func:`nn.Dropout2d` will help promote independence between
    feature maps and should be used instead.

    Args:
        p (float, optional): probability of an element to be zeroed.
        inplace (bool, optional): If set to True, will do this operation
            in-place

    Shape:
        - Input: :math:`(N, C, H, W)`
        - Output: :math:`(N, C, H, W)` (same shape as input)

    Examples::
        >>> m = nn.Dropout2d(p=0.2)
        >>> input = autograd.Variable(torch.randn(20, 16, 32, 32))
        >>> output = m(input)

    .. _Efficient Object Localization Using Convolutional Networks:
       http://arxiv.org/abs/1411.4280

    """
    def __init__(self, p=0.5, inplace=False):
        super(Dropout2d, self).__init__()
        if p < 0 or p > 1:
            raise ValueError("dropout probability has to be between 0 and 1, "
                             "but got {}".format(p))
        self.p = p
        self.inplace = inplace
        self.drop = torch.nn.Dropout2d(p=p, inplace=inplace)

    def forward(self, input):
        if isinstance(input, Variable):
            return self.drop(input)
        elif isinstance(input, tuple) or isinstance(input, list):
            return my_data_parallel(self.drop, input)
        else:
            raise RuntimeError('unknown input type')

    def __repr__(self):
        inplace_str = ', inplace' if self.inplace else ''
        return self.__class__.__name__ + ' (' \
            + 'p=' + str(self.p) \
            + inplace_str + ')'


class Linear(Module):
    r"""Applies a linear transformation to the incoming data: :math:`y = Ax + b`

    Args:
        in_features: size of each input sample
        out_features: size of each output sample
        bias: If set to False, the layer will not learn an additive bias.
            Default: True

    Shape:
        - Input: :math:`(N, *, in\_features)` where `*` means any number of
          additional dimensions
        - Output: :math:`(N, *, out\_features)` where all but the last dimension
          are the same shape as the input.

    Attributes:
        weight: the learnable weights of the module of shape
            (out_features x in_features)
        bias:   the learnable bias of the module of shape (out_features)

    Examples::
        >>> m = nn.Linear(20, 30)
        >>> input = autograd.Variable(torch.randn(128, 20))
        >>> output = m(input)
        >>> print(output.size())

    """
    def __init__(self, in_features, out_features, bias=True):
        super(Linear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = Parameter(torch.Tensor(out_features, in_features))
        if bias:
            self.bias = Parameter(torch.Tensor(out_features))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self):
        stdv = 1. / math.sqrt(self.weight.size(1))
        self.weight.data.uniform_(-stdv, stdv)
        if self.bias is not None:
            self.bias.data.uniform_(-stdv, stdv)

    def forward(self, input):
        if isinstance(input, Variable):
            return F.linear(input, self.weight, self.bias)
        elif isinstance(input, tuple) or isinstance(input, list):
            return my_data_parallel(self, input)
        else:
            raise RuntimeError('unknown input type')

    def __repr__(self):
        return self.__class__.__name__ + ' (' \
            + str(self.in_features) + ' -> ' \
            + str(self.out_features) + ')'