pooling_kernel.c 5.33 KB
Newer Older
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 * Created by: Hang Zhang
 * ECE Department, Rutgers University
 * Email: zhang.hang@rutgers.edu
 * Copyright (c) 2017
 *
 * This source code is licensed under the MIT-style license found in the
 * LICENSE file in the root directory of this source tree 
 *+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 */
#ifndef THC_GENERIC_FILE
#define THC_GENERIC_FILE "generic/pooling_kernel.c"
#else


__global__ void Encoding_(DilatedAvgPool_Forward_kernel) (
    THCDeviceTensor<real, 4> X, 
    THCDeviceTensor<real, 4> Y, 
    int kH, int kW, int dH, int dW,
    int padH, int padW, int dilationH, int dilationW
    )
/*
 * dilated avgpool2d forward kernel function
 */
{
    /* declarations of the variables */
    int bc, b, c, w, h, C;
    real sum;
    /* Get the index and channels */ 
    bc = blockIdx.z;
    w = blockIdx.x * blockDim.x + threadIdx.x;
    h = blockIdx.y * blockDim.y + threadIdx.y;
    C = Y.getSize(1);
    b = bc / C;
    c = bc - b*C;
    /* boundary check for output */
    if (w >= Y.getSize(3) || h >= Y.getSize(2)) return;
    int hstart = h*dW -padH;
    int wstart = w*dW -padW;
    int hend = min(hstart + kH*dilationH, X.getSize(2));
    int wend = min(wstart + kW*dilationW, X.getSize(3));
    hstart = max(hstart, 0);
    wstart = max(wstart, 0);
    int pool_size = ((hend - hstart - 1) / dilationH + 1) * 
        ((wend - wstart - 1) / dilationW + 1);
    sum = 0;
    for (int th=hstart; th < hend; th+=dilationH) {
        for (int tw=wstart; tw < wend; tw+=dilationW) {
            sum += X[b][c][th][tw];
        }
    }
    Y[b][c][h][w] = sum / pool_size;
}

void Encoding_(DilatedAvgPool_Forward)(THCState *state, 
    THCTensor *X_, THCTensor *Y_, 
    int kH, int kW, int dH, int dW,
    int padH, int padW,
    int dilationH, int dilationW)
/*
 * dilated avgpool2d forward function
 */
{
    /* Check the GPU index and tensor dims*/
    THCTensor_(checkGPU)(state, 2, X_, Y_);
    if (THCTensor_(nDimension)(state, X_) != 4 ||
        THCTensor_(nDimension)(state, Y_) != 4)
        THError("Encoding: incorrect input dims. \n");
    /* Device tensors */
    THCDeviceTensor<real, 4> X = devicetensor<4>(state, X_);
    THCDeviceTensor<real, 4> Y = devicetensor<4>(state, Y_);
    /* kernel function */
    cudaStream_t stream = THCState_getCurrentStream(state);
    dim3 threads(16, 16);
    dim3 blocks(Y.getSize(3)/16+1, Y.getSize(2)/16+1, 
                Y.getSize(1)*Y.getSize(0));
    Encoding_(DilatedAvgPool_Forward_kernel)<<<blocks, threads, 0, stream>>>
        (X, Y, kH, kW, dH, dW, padH, padW, dilationH, dilationW);
    THCudaCheck(cudaGetLastError());
}

__global__ void Encoding_(DilatedAvgPool_Backward_kernel) (
    THCDeviceTensor<real, 4> gradX, 
    THCDeviceTensor<real, 4> gradY, 
    int kH, int kW, int dH, int dW,
    int padH, int padW, int dilationH, int dilationW
    )
/*
 * dilated avgpool2d forward kernel function
 */
{
    /* declarations of the variables */
    int bc, b, c, w, h, C;
    real sum;
    /* Get the index and channels */ 
    bc = blockIdx.z;
    w = blockIdx.x * blockDim.x + threadIdx.x;
    h = blockIdx.y * blockDim.y + threadIdx.y;
    C = gradX.getSize(1);
    b = bc / C;
    c = bc - b*C;
    /* boundary check for output */
    if (w >= gradX.getSize(3) || h >= gradX.getSize(2)) return;
    int phstart = (h + padH < ((kH-1)*dilationH+1)) ? 0 : 
        (h + padH - ((kH-1)*dilationH+1))/dH + 1;
    int pwstart = (w + padW < ((kW-1)*dilationW+1)) ? 0 : 
        (w + padW - ((kW-1)*dilationW+1))/dW + 1;
    int phend = min((h+padH)/dH+1, gradY.getSize(2));
    int pwend = min((w+padW)/dW+1, gradY.getSize(3));
    sum = 0;
    int hstart, wstart, hend, wend, pool_size;
    for (int ph=phstart; ph < phend; ++ph) {
        for (int pw=pwstart; pw < pwend; ++pw) {
            hstart = ph*dW -padH;
            wstart = pw*dW -padW;
            hend = min(hstart + kH*dilationH, gradX.getSize(2));
            wend = min(wstart + kW*dilationW, gradX.getSize(3));
            hstart = max(hstart, 0);
            wstart = max(wstart, 0);
            pool_size = ((hend - hstart - 1) / dilationH + 1) * 
                ((wend - wstart - 1) / dilationW + 1);
            sum += gradY[b][c][ph][pw] / pool_size;
        }
    }
    gradX[b][c][h][w] = sum;
}

void Encoding_(DilatedAvgPool_Backward)(THCState *state, 
    THCTensor *gradX_, THCTensor *gradY_, 
    int kH, int kW, int dH, int dW,
    int padH, int padW,
    int dilationH, int dilationW)
/*
 * dilated avgpool2d forward function
 */
{
    /* Check the GPU index and tensor dims*/
    THCTensor_(checkGPU)(state, 2, gradX_, gradY_);
    if (THCTensor_(nDimension)(state, gradX_) != 4 ||
        THCTensor_(nDimension)(state, gradY_) != 4)
        THError("Encoding: incorrect input dims. \n");
    /* Device tensors */
    THCDeviceTensor<real, 4> gradX = devicetensor<4>(state, gradX_);
    THCDeviceTensor<real, 4> gradY = devicetensor<4>(state, gradY_);
    /* kernel function */
    cudaStream_t stream = THCState_getCurrentStream(state);
    dim3 threads(16, 16);
    dim3 blocks(gradX.getSize(3)/16+1, gradX.getSize(2)/16+1, 
                gradX.getSize(1)*gradX.getSize(0));
    Encoding_(DilatedAvgPool_Backward_kernel)<<<blocks, threads, 0, stream>>>
        (gradX, gradY, kH, kW, dH, dW, padH, padW, dilationH, dilationW);
    THCudaCheck(cudaGetLastError());
}

#endif