"integration-tests/vscode:/vscode.git/clone" did not exist on "46a5a7e73e8b1adde4a279c7d68818ed9e17f607"
coco.py 6.49 KB
Newer Older
Zhang's avatar
v0.4.2  
Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
from tqdm import tqdm, trange
from PIL import Image, ImageOps, ImageFilter

import torch
import torch.utils.data as data
import torchvision.transforms as transform
import random
import math
import numpy as np

from .dataset import ToLabel

"""
NUM_CHANNEL = 91
[] background
[5] airplane
[2] bicycle
[16] bird
[9] boat
[44] bottle
[6] bus
[3] car
[17] cat
[62] chair
[21] cow
[67] dining table
[18] dog
[19] horse
[4] motorcycle
[1] person
[64] potted plant
[20] sheep
[63] couch
[7] train
[72] tv
"""
catlist = [0, 5, 2, 16, 9, 44, 6, 3, 17, 62, 21, 67, 18, 19, 4,
    1, 64, 20, 63, 7, 72]


class Segmentation(data.Dataset):
    def __init__(self, root, mode='train', transform=None, 
                 target_transform=None):
        from pycocotools.coco import COCO
        from pycocotools import mask
        if mode == 'train':
            print('train set')
            ann_file = os.path.join(root, 'coco/annotations/instances_train2014.json')
            ids_file = os.path.join(root, 'coco/annotations/train_ids.pth')
            root = os.path.join(root, 'coco/train2014')
        else:
            print('val set')
            ann_file = os.path.join(root, 'coco/annotations/instances_val2014.json')
            ids_file = os.path.join(root, 'coco/annotations/val_ids.pth')
            root = os.path.join(root, 'coco/val2014')
        self.train = mode
        self.root = root
        self.coco = COCO(ann_file)
        self.coco_mask = mask
        if os.path.exists(ids_file):
            self.ids = torch.load(ids_file)
        else:
            self.new_ids = []
            self.ids = list(self.coco.imgs.keys())
            self.preprocess(ids_file)
            self.ids = self.new_ids
        self.transform = transform
        self.target_transform = target_transform

    def preprocess(self, ids_file):
        tbar = trange(len(self.ids))
        for i in tbar:
            img_id = self.ids[i]
            cocotarget = self.coco.loadAnns(self.coco.getAnnIds(imgIds=img_id))
            img_metadata = self.coco.loadImgs(img_id)[0]
            mask = self._gen_seg_mask(cocotarget, img_metadata['height'], 
                                      img_metadata['width'])
            # more than 1k pixels
            if (mask > 0).sum() > 1000:
                self.new_ids.append(img_id)
            tbar.set_description('Doing: {}/{}, got {} qualified images'.\
                format(i, len(self.ids), len(self.new_ids)))

        print('number of qualified images: ', len(self.new_ids))
        torch.save(self.new_ids, ids_file)

    def __getitem__(self, index):
        coco = self.coco
        img_id = self.ids[index]
        cocotarget = coco.loadAnns(coco.getAnnIds(imgIds=img_id))
        img_metadata = coco.loadImgs(img_id)[0]
        path = img_metadata['file_name']

        img = Image.open(os.path.join(self.root, path)).convert('RGB')
        mask = Image.fromarray(
            self._gen_seg_mask(cocotarget, img_metadata['height'], 
                               img_metadata['width'])
            )
        # synchrosized transform
        if True:#self.train == 'train':
            img, mask = self._sync_transform(img, mask)
        else:
            img, mask = self._val_sync_transform(img, mask)

        # general resize, normalize and toTensor
        if self.transform is not None:
            #print("transform for input")
            img = self.transform(img)
        if self.target_transform is not None:
            #print("transform for label")
            mask = self.target_transform(mask)

        return img, mask

    def __len__(self):
        return len(self.ids)

    def _val_sync_transform(self, img, mask):
        outsize = 480
        short = outsize
        w, h = img.size
        if w > h:
            oh = short
            ow = int(1.0 * w * oh / h)
        else:
            ow = short
            oh = int(1.0 * h * ow / w)
        img = img.resize((ow, oh), Image.BILINEAR)
        mask = mask.resize((ow, oh), Image.NEAREST)
        # center crop
        w, h = img.size
        x1 = int(round((w - outsize) / 2.))
        y1 = int(round((h - outsize) / 2.))
        img = img.crop((x1, y1, x1+outsize, y1+outsize))
        mask = mask.crop((x1, y1, x1+outsize, y1+outsize))

        return img, mask

    def _sync_transform(self, img, mask):
        # random mirror
        if random.random() < 0.5:
            img  = img.transpose(Image.FLIP_LEFT_RIGHT)
            mask = mask.transpose(Image.FLIP_LEFT_RIGHT)
        base_size = 520
        crop_size = 480
        # random scale (short edge from 480 to 720)
        long_size = random.randint(int(base_size*0.5), int(base_size*2.0))
        w, h = img.size
        if h > w:
            oh = long_size
            ow = int(1.0 * w * oh / h)
            short_size = ow
        else:
            ow = long_size
            oh = int(1.0 * h * ow / w)
            short_size = oh
        img = img.resize((ow, oh), Image.BILINEAR)
        mask = mask.resize((ow, oh), Image.NEAREST)
        # random rotate -10~10, mask using NN rotate
        deg = random.uniform(-10,10)
        img = img.rotate(deg, resample=Image.BILINEAR)
        mask = mask.rotate(deg, resample=Image.NEAREST)
        # pad crop
        if short_size < crop_size:
            padh = crop_size - oh if oh < crop_size else 0
            padw = crop_size - ow if ow < crop_size else 0
            img  = ImageOps.expand(img,  border=(0,0,padw,padh), fill=0)
            mask = ImageOps.expand(mask, border=(0,0,padw,padh), fill=0)
        # random crop 480
        w, h = img.size
        x1 = random.randint(0, w - crop_size)
        y1 = random.randint(0, h - crop_size) 
        img = img.crop((x1, y1, x1+crop_size, y1+crop_size))
        mask = mask.crop((x1, y1, x1+crop_size, y1+crop_size))
        # gaussian blur as in PSP ?
        if random.random() < 0.5:
            img = img.filter(ImageFilter.GaussianBlur(
                radius=random.random()))
        return img, mask

    def _gen_seg_mask(self, target, h, w):
        mask = np.zeros((h, w), dtype=np.uint8)
        coco_mask = self.coco_mask
        for instance in target:
            rle = coco_mask.frPyObjects(instance['segmentation'], h, w)
            m = coco_mask.decode(rle)
            cat = instance['category_id']
            if cat in catlist:
                c = catlist.index(cat)
            else:
                continue
            if len(m.shape) < 3:
                mask[:, :] += (mask == 0) * (m * c)
            else:
                mask[:, :] += (mask == 0) * (((np.sum(m, axis=2)) > 0) * c).astype(np.uint8)
        return mask