splat.py 3.23 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
"""Split-Attention"""

import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import Conv2d, Module, Linear, BatchNorm2d, ReLU
from torch.nn.modules.utils import _pair

9
from .rectify import RFConv2d
Hang Zhang's avatar
Hang Zhang committed
10
11
from .dropblock import DropBlock2D

12
__all__ = ['SplAtConv2d']
Hang Zhang's avatar
Hang Zhang committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

class SplAtConv2d(Module):
    """Split-Attention Conv2d
    """
    def __init__(self, in_channels, channels, kernel_size, stride=(1, 1), padding=(0, 0),
                 dilation=(1, 1), groups=1, bias=True,
                 radix=2, reduction_factor=4,
                 rectify=False, rectify_avg=False, norm_layer=None,
                 dropblock_prob=0.0, **kwargs):
        super(SplAtConv2d, self).__init__()
        padding = _pair(padding)
        self.rectify = rectify and (padding[0] > 0 or padding[1] > 0)
        self.rectify_avg = rectify_avg
        inter_channels = max(in_channels*radix//reduction_factor, 32)
        self.radix = radix
        self.cardinality = groups
        self.channels = channels
        self.dropblock_prob = dropblock_prob
        if self.rectify:
            self.conv = RFConv2d(in_channels, channels*radix, kernel_size, stride, padding, dilation,
                                 groups=groups*radix, bias=bias, average_mode=rectify_avg, **kwargs)
        else:
            self.conv = Conv2d(in_channels, channels*radix, kernel_size, stride, padding, dilation,
                               groups=groups*radix, bias=bias, **kwargs)
        self.use_bn = norm_layer is not None
        self.bn0 = norm_layer(channels*radix)
        self.relu = ReLU(inplace=True)
        self.fc1 = Conv2d(channels, inter_channels, 1, groups=self.cardinality)
        self.bn1 = norm_layer(inter_channels)
        self.fc2 = Conv2d(inter_channels, channels*radix, 1, groups=self.cardinality)
        if dropblock_prob > 0.0:
            self.dropblock = DropBlock2D(dropblock_prob, 3)
45
        self.rsoftmax = rSoftMax(radix, groups)
Hang Zhang's avatar
Hang Zhang committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

    def forward(self, x):
        x = self.conv(x)
        if self.use_bn:
            x = self.bn0(x)
        if self.dropblock_prob > 0.0:
            x = self.dropblock(x)
        x = self.relu(x)

        batch, channel = x.shape[:2]
        if self.radix > 1:
            splited = torch.split(x, channel//self.radix, dim=1)
            gap = sum(splited) 
        else:
            gap = x
        gap = F.adaptive_avg_pool2d(gap, 1)
        gap = self.fc1(gap)

        if self.use_bn:
            gap = self.bn1(gap)
        gap = self.relu(gap)

68
69
        atten = self.fc2(gap)
        atten = self.rsoftmax(atten).view(batch, -1, 1, 1)
Hang Zhang's avatar
Hang Zhang committed
70
71
72
73
74
75
76

        if self.radix > 1:
            atten = torch.split(atten, channel//self.radix, dim=1)
            out = sum([att*split for (att, split) in zip(atten, splited)])
        else:
            out = atten * x
        return out.contiguous()
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

class rSoftMax(nn.Module):
    def __init__(self, radix, cardinality):
        super().__init__()
        self.radix = radix
        self.cardinality = cardinality

    def forward(self, x):
        batch = x.size(0)
        if self.radix > 1:
            x = x.view(batch, self.cardinality, self.radix, -1).transpose(1, 2)
            x = F.softmax(x, dim=1)
            x = x.reshape(batch, -1)
        else:
            x = torch.sigmoid(x)
        return x