"...git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "0dd0528851bfa48d27ba68712d7df18ff619d22f"
encoding_kernel.c 2.64 KB
Newer Older
Hang Zhang's avatar
init  
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 * Created by: Hang Zhang
 * ECE Department, Rutgers University
 * Email: zhang.hang@rutgers.edu
 * Copyright (c) 2017
 *
 * This source code is licensed under the MIT-style license found in the
 * LICENSE file in the root directory of this source tree 
 *+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 */
#ifndef THC_GENERIC_FILE
Hang Zhang's avatar
tested  
Hang Zhang committed
12
#define THC_GENERIC_FILE "generic/encoding_kernel.c"
Hang Zhang's avatar
init  
Hang Zhang committed
13
#else
Hang Zhang's avatar
tested  
Hang Zhang committed
14
/*
Hang Zhang's avatar
init  
Hang Zhang committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
template <int Dim>
THCDeviceTensor<float, Dim> devicetensor(THCState *state, THCTensor *t) {
  if (!t) {
    return THCDeviceTensor<float, Dim>();
  }

  int inDim = THCTensor_(nDimension)(state, t);
  if (inDim == Dim) {
    return toDeviceTensor<float, Dim>(state, t);
  }

  // View in which the last dimensions are collapsed or expanded as needed
  THAssert(THCTensor_(isContiguous)(state, t));
  int size[Dim];
  for (int i = 0; i < Dim || i < inDim; ++i) {
    if (i < Dim && i < inDim) {
      size[i] = t->size[i];
    } else if (i < Dim) {
      size[i] = 1;
    } else {
      size[Dim - 1] *= t->size[i];
    }
  }
  return THCDeviceTensor<float, Dim>(THCTensor_(data)(state, t), size);
}
Hang Zhang's avatar
tested  
Hang Zhang committed
40
*/
Hang Zhang's avatar
init  
Hang Zhang committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
__global__ void Encoding_(Aggregate_Forward_kernel) (
	THCDeviceTensor<real, 3> E,
	THCDeviceTensor<real, 3> A,
	THCDeviceTensor<real, 4> R)
{
  /* declarations of the variables */
  int b, k, d, i, N;
	real sum;
  /* Get the index and channels */ 
  b = blockIdx.z;
  d = blockIdx.x * blockDim.x + threadIdx.x;
  k = blockIdx.y * blockDim.y + threadIdx.y;
	N = A.getSize(1);
	/* boundary check for output */
	sum = 0;
	if (d >= E.getSize(2) || k >= E.getSize(1))	return;
	/* main operation */
	for(i=0; i<N; i++) {
		sum += A[b][i][k].ldg() * R[b][i][k][d].ldg();
	}
	E[b][k][d] = sum;
}

void Encoding_(Aggregate_Forward)(THCState *state, THCTensor *E_, THCTensor *A_,
							THCTensor *R_)
/*
 * aggregating the residuals with assignment weights
 */
{
	/* Check the GPU index */
	THCTensor_(checkGPU)(state, 3, E_, A_, R_);
	if (THCTensor_(nDimension)(state, E_) != 3 ||
			THCTensor_(nDimension)(state, A_) != 3 ||
			THCTensor_(nDimension)(state, R_) != 4)
Hang Zhang's avatar
tested  
Hang Zhang committed
75
		THError("Encoding: incorrect input dims. \n");
Hang Zhang's avatar
init  
Hang Zhang committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
	/* Device tensors */
	THCDeviceTensor<real, 3> E = devicetensor<3>(state, E_);
	THCDeviceTensor<real, 3> A = devicetensor<3>(state, A_);
	THCDeviceTensor<real, 4> R = devicetensor<4>(state, R_);
	/* kernel function */
	cudaStream_t stream = THCState_getCurrentStream(state);
	dim3 threads(16, 16);
	dim3 blocks(E.getSize(2)/16+1, E.getSize(1)/16+1, 
							E.getSize(0));
	Encoding_(Aggregate_Forward_kernel)<<<blocks, threads, 0, stream>>>(E, A, R);
	THCudaCheck(cudaGetLastError());
}

#endif