train.py 12.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
###########################################################################
# Created by: Hang Zhang 
# Email: zhang.hang@rutgers.edu 
# Copyright (c) 2017
###########################################################################

import os
import copy
import argparse
import numpy as np
from tqdm import tqdm

import torch
from torch.utils import data
import torchvision.transforms as transform
from torch.nn.parallel.scatter_gather import gather

import encoding.utils as utils
from encoding.nn import SegmentationLosses, SyncBatchNorm
from encoding.parallel import DataParallelModel, DataParallelCriterion
from encoding.datasets import get_dataset
from encoding.models import get_segmentation_model

class Options():
    def __init__(self):
        parser = argparse.ArgumentParser(description='PyTorch \
            Segmentation')
        # model and dataset 
        parser.add_argument('--model', type=str, default='encnet',
                            help='model name (default: encnet)')
        parser.add_argument('--backbone', type=str, default='resnet50',
                            help='backbone name (default: resnet50)')
        parser.add_argument('--dataset', type=str, default='ade20k',
                            help='dataset name (default: pascal12)')
        parser.add_argument('--workers', type=int, default=16,
                            metavar='N', help='dataloader threads')
        parser.add_argument('--base-size', type=int, default=520,
                            help='base image size')
        parser.add_argument('--crop-size', type=int, default=480,
                            help='crop image size')
        parser.add_argument('--train-split', type=str, default='train',
                            help='dataset train split (default: train)')
        # training hyper params
        parser.add_argument('--aux', action='store_true', default= False,
                            help='Auxilary Loss')
        parser.add_argument('--aux-weight', type=float, default=0.2,
                            help='Auxilary loss weight (default: 0.2)')
        parser.add_argument('--se-loss', action='store_true', default= False,
                            help='Semantic Encoding Loss SE-loss')
        parser.add_argument('--se-weight', type=float, default=0.2,
                            help='SE-loss weight (default: 0.2)')
        parser.add_argument('--epochs', type=int, default=None, metavar='N',
                            help='number of epochs to train (default: auto)')
        parser.add_argument('--start_epoch', type=int, default=0,
                            metavar='N', help='start epochs (default:0)')
        parser.add_argument('--batch-size', type=int, default=16,
                            metavar='N', help='input batch size for \
                            training (default: auto)')
        parser.add_argument('--test-batch-size', type=int, default=16,
                            metavar='N', help='input batch size for \
                            testing (default: same as batch size)')
        # optimizer params
        parser.add_argument('--lr', type=float, default=None, metavar='LR',
                            help='learning rate (default: auto)')
        parser.add_argument('--lr-scheduler', type=str, default='poly',
                            help='learning rate scheduler (default: poly)')
        parser.add_argument('--momentum', type=float, default=0.9,
                            metavar='M', help='momentum (default: 0.9)')
        parser.add_argument('--weight-decay', type=float, default=1e-4,
                            metavar='M', help='w-decay (default: 1e-4)')
        # cuda, seed and logging
        parser.add_argument('--no-cuda', action='store_true', default=
                            False, help='disables CUDA training')
        parser.add_argument('--seed', type=int, default=1, metavar='S',
                            help='random seed (default: 1)')
        # checking point
        parser.add_argument('--resume', type=str, default=None,
                            help='put the path to resuming file if needed')
        parser.add_argument('--checkname', type=str, default='default',
                            help='set the checkpoint name')
        parser.add_argument('--model-zoo', type=str, default=None,
                            help='evaluating on model zoo model')
        # finetuning pre-trained models
        parser.add_argument('--ft', action='store_true', default= False,
                            help='finetuning on a different dataset')
        # evaluation option
        parser.add_argument('--eval', action='store_true', default= False,
                            help='evaluating mIoU')
        parser.add_argument('--test-val', action='store_true', default= False,
                            help='generate masks on val set')
        parser.add_argument('--no-val', action='store_true', default= False,
                            help='skip validation during training')
        # test option
        parser.add_argument('--test-folder', type=str, default=None,
                            help='path to test image folder')
        # the parser
        self.parser = parser

    def parse(self):
        args = self.parser.parse_args()
        args.cuda = not args.no_cuda and torch.cuda.is_available()
        # default settings for epochs, batch_size and lr
        if args.epochs is None:
            epoches = {
                'coco': 30,
                'pascal_aug': 80,
                'pascal_voc': 50,
                'pcontext': 80,
                'ade20k': 180,
                'citys': 240,
            }
            args.epochs = epoches[args.dataset.lower()]
        if args.lr is None:
            lrs = {
                'coco': 0.004,
                'pascal_aug': 0.001,
                'pascal_voc': 0.0001,
                'pcontext': 0.001,
                'ade20k': 0.004,
                'citys': 0.004,
            }
            args.lr = lrs[args.dataset.lower()] / 16 * args.batch_size
        print(args)
        return args


class Trainer():
    def __init__(self, args):
        self.args = args
        # data transforms
        input_transform = transform.Compose([
            transform.ToTensor(),
            transform.Normalize([.485, .456, .406], [.229, .224, .225])])
        # dataset
        data_kwargs = {'transform': input_transform, 'base_size': args.base_size,
                       'crop_size': args.crop_size}
        trainset = get_dataset(args.dataset, split=args.train_split, mode='train', **data_kwargs)
        testset = get_dataset(args.dataset, split='val', mode ='val', **data_kwargs)
        # dataloader
        kwargs = {'num_workers': args.workers, 'pin_memory': True} \
            if args.cuda else {}
        self.trainloader = data.DataLoader(trainset, batch_size=args.batch_size,
                                           drop_last=True, shuffle=True, **kwargs)
        self.valloader = data.DataLoader(testset, batch_size=args.batch_size,
                                         drop_last=False, shuffle=False, **kwargs)
        self.nclass = trainset.num_class
        # model
        model = get_segmentation_model(args.model, dataset=args.dataset,
                                       backbone = args.backbone, aux = args.aux,
                                       se_loss = args.se_loss, norm_layer = SyncBatchNorm,
                                       base_size=args.base_size, crop_size=args.crop_size)
        print(model)
        # optimizer using different LR
        params_list = [{'params': model.pretrained.parameters(), 'lr': args.lr},]
        if hasattr(model, 'head'):
            params_list.append({'params': model.head.parameters(), 'lr': args.lr*10})
        if hasattr(model, 'auxlayer'):
            params_list.append({'params': model.auxlayer.parameters(), 'lr': args.lr*10})
        optimizer = torch.optim.SGD(params_list, lr=args.lr,
            momentum=args.momentum, weight_decay=args.weight_decay)
        # criterions
        self.criterion = SegmentationLosses(se_loss=args.se_loss,
                                            aux=args.aux,
                                            nclass=self.nclass, 
                                            se_weight=args.se_weight,
                                            aux_weight=args.aux_weight)
        self.model, self.optimizer = model, optimizer
        # using cuda
        if args.cuda:
            self.model = DataParallelModel(self.model).cuda()
            self.criterion = DataParallelCriterion(self.criterion).cuda()
        # resuming checkpoint
        if args.resume is not None:
            if not os.path.isfile(args.resume):
                raise RuntimeError("=> no checkpoint found at '{}'" .format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            if args.cuda:
                self.model.module.load_state_dict(checkpoint['state_dict'])
            else:
                self.model.load_state_dict(checkpoint['state_dict'])
            if not args.ft:
                self.optimizer.load_state_dict(checkpoint['optimizer'])
            self.best_pred = checkpoint['best_pred']
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
        # clear start epoch if fine-tuning
        if args.ft:
            args.start_epoch = 0
        # lr scheduler
        self.scheduler = utils.LR_Scheduler_Head(args.lr_scheduler, args.lr,
                                                 args.epochs, len(self.trainloader))
        self.best_pred = 0.0

    def training(self, epoch):
        train_loss = 0.0
        self.model.train()
        tbar = tqdm(self.trainloader)
        for i, (image, target) in enumerate(tbar):
            self.scheduler(self.optimizer, i, epoch, self.best_pred)
            self.optimizer.zero_grad()
            outputs = self.model(image)
            loss = self.criterion(outputs, target)
            loss.backward()
            self.optimizer.step()
            train_loss += loss.item()
            tbar.set_description('Train loss: %.3f' % (train_loss / (i + 1)))

        if self.args.no_val:
            # save checkpoint every epoch
            is_best = False
            utils.save_checkpoint({
                'epoch': epoch + 1,
                'state_dict': self.model.module.state_dict(),
                'optimizer': self.optimizer.state_dict(),
                'best_pred': self.best_pred,
            }, self.args, is_best)


    def validation(self, epoch):
        # Fast test during the training
        def eval_batch(model, image, target):
            outputs = model(image)
            outputs = gather(outputs, 0, dim=0)
            pred = outputs[0]
            target = target.cuda()
            correct, labeled = utils.batch_pix_accuracy(pred.data, target)
            inter, union = utils.batch_intersection_union(pred.data, target, self.nclass)
            return correct, labeled, inter, union

        is_best = False
        self.model.eval()
        total_inter, total_union, total_correct, total_label = 0, 0, 0, 0
        tbar = tqdm(self.valloader, desc='\r')
        for i, (image, target) in enumerate(tbar):
            with torch.no_grad():
                correct, labeled, inter, union = eval_batch(self.model, image, target)

            total_correct += correct
            total_label += labeled
            total_inter += inter
            total_union += union
            pixAcc = 1.0 * total_correct / (np.spacing(1) + total_label)
            IoU = 1.0 * total_inter / (np.spacing(1) + total_union)
            mIoU = IoU.mean()
            tbar.set_description(
                'pixAcc: %.3f, mIoU: %.3f' % (pixAcc, mIoU))

        new_pred = (pixAcc + mIoU)/2
        if new_pred > self.best_pred:
            is_best = True
            self.best_pred = new_pred
        utils.save_checkpoint({
            'epoch': epoch + 1,
            'state_dict': self.model.module.state_dict(),
            'optimizer': self.optimizer.state_dict(),
            'best_pred': self.best_pred,
        }, self.args, is_best)


if __name__ == "__main__":
    args = Options().parse()
    torch.manual_seed(args.seed)
    trainer = Trainer(args)
    print('Starting Epoch:', trainer.args.start_epoch)
    print('Total Epoches:', trainer.args.epochs)
    if args.eval:
        trainer.validation(trainer.args.start_epoch)
    else:
        for epoch in range(trainer.args.start_epoch, trainer.args.epochs):
            trainer.training(epoch)
            if not trainer.args.no_val:
                trainer.validation(epoch)