fcn.py 4.91 KB
Newer Older
Zhang's avatar
v0.4.2  
Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
###########################################################################
# Created by: Hang Zhang 
# Email: zhang.hang@rutgers.edu 
# Copyright (c) 2017
###########################################################################
from __future__ import division
import os
import numpy as np
import torch
import torch.nn as nn
from torch.nn.functional import upsample

from .base import BaseNet

__all__ = ['FCN', 'get_fcn', 'get_fcn_resnet50_pcontext', 'get_fcn_resnet50_ade']

class FCN(BaseNet):
    r"""Fully Convolutional Networks for Semantic Segmentation

    Parameters
    ----------
    nclass : int
        Number of categories for the training dataset.
    backbone : string
        Pre-trained dilated backbone network type (default:'resnet50'; 'resnet50',
        'resnet101' or 'resnet152').
    norm_layer : object
        Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`;


    Reference:

        Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks
        for semantic segmentation." *CVPR*, 2015

    Examples
    --------
    >>> model = FCN(nclass=21, backbone='resnet50')
    >>> print(model)
    """
    def __init__(self, nclass, backbone, aux=True, se_loss=False, norm_layer=nn.BatchNorm2d, **kwargs):
        super(FCN, self).__init__(nclass, backbone, aux, se_loss, norm_layer=norm_layer)
        self.head = FCNHead(2048, nclass, norm_layer)
        if aux:
            self.auxlayer = FCNHead(1024, nclass, norm_layer)

    def forward(self, x):
        imsize = x.size()[2:]
        _, _, c3, c4 = self.base_forward(x)

        x = self.head(c4)
        x = upsample(x, imsize, **self._up_kwargs)
        outputs = [x]
        if self.aux:
            auxout = self.auxlayer(c3)
            auxout = upsample(auxout, imsize, **self._up_kwargs)
            outputs.append(auxout)
        return tuple(outputs)

        
class FCNHead(nn.Module):
    def __init__(self, in_channels, out_channels, norm_layer):
        super(FCNHead, self).__init__()
        inter_channels = in_channels // 4
        self.conv5 = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 3, padding=1),
                                   norm_layer(inter_channels),
                                   nn.ReLU(),
                                   nn.Dropout2d(0.1, False),
                                   nn.Conv2d(inter_channels, out_channels, 1))

    def forward(self, x):
        return self.conv5(x)


def get_fcn(dataset='pascal_voc', backbone='resnet50', pretrained=False,
            root='~/.encoding/models', **kwargs):
    r"""FCN model from the paper `"Fully Convolutional Network for semantic segmentation"
    <https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf>`_
    Parameters
    ----------
    dataset : str, default pascal_voc
        The dataset that model pretrained on. (pascal_voc, ade20k)
    pretrained : bool, default False
        Whether to load the pretrained weights for model.
    root : str, default '~/.encoding/models'
        Location for keeping the model parameters.
    Examples
    --------
    >>> model = get_fcn(dataset='pascal_voc', backbone='resnet50', pretrained=False)
    >>> print(model)
    """
    acronyms = {
        'pascal_voc': 'voc',
        'pascal_aug': 'voc',
        'pcontext': 'pcontext',
        'ade20k': 'ade',
    }
    # infer number of classes
    from ..datasets import datasets, VOCSegmentation, VOCAugSegmentation, ADE20KSegmentation
    model = FCN(datasets[dataset.lower()].NUM_CLASS, backbone=backbone, **kwargs)
    if pretrained:
        from .model_store import get_model_file
        model.load_state_dict(torch.load(
            get_model_file('fcn_%s_%s'%(backbone, acronyms[dataset]), root=root)),
            strict= False)
    return model

def get_fcn_resnet50_pcontext(pretrained=False, root='~/.encoding/models', **kwargs):
    r"""EncNet-PSP model from the paper `"Context Encoding for Semantic Segmentation"
    <https://arxiv.org/pdf/1803.08904.pdf>`_

    Parameters
    ----------
    pretrained : bool, default False
        Whether to load the pretrained weights for model.
    root : str, default '~/.encoding/models'
        Location for keeping the model parameters.


    Examples
    --------
    >>> model = get_fcn_resnet50_pcontext(pretrained=True)
    >>> print(model)
    """
    return get_fcn('pcontext', 'resnet50', pretrained)

def get_fcn_resnet50_ade(pretrained=False, root='~/.encoding/models', **kwargs):
    r"""EncNet-PSP model from the paper `"Context Encoding for Semantic Segmentation"
    <https://arxiv.org/pdf/1803.08904.pdf>`_

    Parameters
    ----------
    pretrained : bool, default False
        Whether to load the pretrained weights for model.
    root : str, default '~/.encoding/models'
        Location for keeping the model parameters.


    Examples
    --------
    >>> model = get_fcn_resnet50_ade(pretrained=True)
    >>> print(model)
    """
    return get_fcn('ade20k', 'resnet50', pretrained)