base.py 8.08 KB
Newer Older
Zhang's avatar
v0.4.2  
Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
###########################################################################
# Created by: Hang Zhang 
# Email: zhang.hang@rutgers.edu 
# Copyright (c) 2017
###########################################################################

import math
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.functional import upsample
from torch.nn.parallel.data_parallel import DataParallel
from torch.nn.parallel.parallel_apply import parallel_apply
from torch.nn.parallel.scatter_gather import scatter

from .. import dilated as resnet
from ..utils import batch_pix_accuracy, batch_intersection_union

up_kwargs = {'mode': 'bilinear', 'align_corners': True}

__all__ = ['BaseNet', 'EvalModule', 'MultiEvalModule']

class BaseNet(nn.Module):
    def __init__(self, nclass, backbone, aux, se_loss, dilated=True, norm_layer=None,
                 mean=[.485, .456, .406], std=[.229, .224, .225]):
        super(BaseNet, self).__init__()
        self.nclass = nclass
        self.aux = aux
        self.se_loss = se_loss
        self.mean = mean
        self.std = std
        # copying modules from pretrained models
        if backbone == 'resnet50':
            self.pretrained = resnet.resnet50(pretrained=True, dilated=dilated, norm_layer=norm_layer)
        elif backbone == 'resnet101':
            self.pretrained = resnet.resnet101(pretrained=True, dilated=dilated, norm_layer=norm_layer)
        elif backbone == 'resnet152':
            self.pretrained = resnet.resnet152(pretrained=True, dilated=dilated, norm_layer=norm_layer)
        else:
            raise RuntimeError('unknown backbone: {}'.format(backbone))
        # bilinear upsample options
        self._up_kwargs = up_kwargs

    def base_forward(self, x):
        x = self.pretrained.conv1(x)
        x = self.pretrained.bn1(x)
        x = self.pretrained.relu(x)
        x = self.pretrained.maxpool(x)
        c1 = self.pretrained.layer1(x)
        c2 = self.pretrained.layer2(c1)
        c3 = self.pretrained.layer3(c2)
        c4 = self.pretrained.layer4(c3)
        return c1, c2, c3, c4

    def evaluate(self, x, target=None):
        pred = self.forward(x)
        if isinstance(pred, (tuple, list)):
            pred = pred[0]
        if target is None:
            return pred
        correct, labeled = batch_pix_accuracy(pred.data, target.data)
        inter, union = batch_intersection_union(pred.data, target.data, self.nclass)
        return correct, labeled, inter, union


class EvalModule(nn.Module):
    """Segmentation Eval Module"""
    def __init__(self, module):
        super(EvalModule, self).__init__()
        self.module = module

    def forward(self, *inputs, **kwargs):
        return self.module.evaluate(*inputs, **kwargs)


class MultiEvalModule(DataParallel):
    """Multi-size Segmentation Eavluator"""
    def __init__(self, module, nclass, device_ids=None,
                 base_size=520, crop_size=480, flip=True,
                 scales=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75]):
        super(MultiEvalModule, self).__init__(module, device_ids)
        self.nclass = nclass
        self.base_size = base_size
        self.crop_size = crop_size
        self.scales = scales
        self.flip = flip

    def parallel_forward(self, inputs, **kwargs):
        """Multi-GPU Mult-size Evaluation

        Args:
            inputs: list of Tensors
        """
        inputs = [(input.unsqueeze(0).cuda(device),) for input, device in zip(inputs, self.device_ids)]
        replicas = self.replicate(self, self.device_ids[:len(inputs)])
        kwargs = scatter(kwargs, target_gpus, dim) if kwargs else []
        if len(inputs) < len(kwargs):
            inputs.extend([() for _ in range(len(kwargs) - len(inputs))])
        elif len(kwargs) < len(inputs):
            kwargs.extend([{} for _ in range(len(inputs) - len(kwargs))])
        outputs = self.parallel_apply(replicas, inputs, kwargs)
        return outputs

    def forward(self, image):
        """Mult-size Evaluation"""
        # only single image is supported for evaluation
        batch, _, h, w = image.size()
        assert(batch == 1)
        stride_rate = 2.0/3.0
        crop_size = self.crop_size
        stride = int(crop_size * stride_rate)
        with torch.cuda.device_of(image):
            scores = image.new().resize_(batch,self.nclass,h,w).zero_().cuda()

        for scale in self.scales:
            long_size = int(math.ceil(self.base_size * scale))
            if h > w:
                height = long_size
                width = int(1.0 * w * long_size / h + 0.5)
                short_size = width
            else:
                width = long_size
                height = int(1.0 * h * long_size / w + 0.5)
                short_size = height
            # resize image to current size
            cur_img = resize_image(image, height, width)
            if scale <= 1.25 or long_size <= crop_size:# #
                pad_img = pad_image(cur_img, self.module.mean,
                                    self.module.std, crop_size)
                outputs = self.module_inference(pad_img)
                outputs = crop_image(outputs, 0, height, 0, width)
            else:
                if short_size < crop_size:
                    # pad if needed
                    pad_img = pad_image(cur_img, self.module.mean,
                                        self.module.std, crop_size)
                else:
                    pad_img = cur_img
                _,_,ph,pw = pad_img.size()
                assert(ph >= height and pw >= width)
                # grid forward and normalize
                h_grids = int(math.ceil(1.0*(ph-crop_size)/stride)) + 1
                w_grids = int(math.ceil(1.0*(pw-crop_size)/stride)) + 1
                with torch.cuda.device_of(image):
                    outputs = image.new().resize_(batch,self.nclass,ph,pw).zero_().cuda()
                    count_norm = image.new().resize_(batch,1,ph,pw).zero_().cuda()
                # grid evaluation
                for idh in range(h_grids):
                    for idw in range(w_grids):
                        h0 = idh * stride
                        w0 = idw * stride
                        h1 = min(h0 + crop_size, ph)
                        w1 = min(w0 + crop_size, pw)
                        crop_img = crop_image(pad_img, h0, h1, w0, w1)
                        # pad if needed
                        pad_crop_img = pad_image(crop_img, self.module.mean,
                                                 self.module.std, crop_size)
                        output = self.module_inference(pad_crop_img)
                        outputs[:,:,h0:h1,w0:w1] += crop_image(output,
                            0, h1-h0, 0, w1-w0)
                        count_norm[:,:,h0:h1,w0:w1] += 1
                assert((count_norm==0).sum()==0)
                outputs = outputs / count_norm
                outputs = outputs[:,:,:height,:width]

            score = resize_image(outputs, h, w)
            scores += score

        return scores

    def module_inference(self, image):
        output = self.module.evaluate(image)
        if self.flip:
            fimg = flip_image(image)
            foutput = self.module.evaluate(fimg)
            output += flip_image(foutput)
        return output.exp()


def resize_image(img, h, w, mode='bilinear'):
    return F.upsample(img, (h, w), **up_kwargs)

def pad_image(img, mean, std, crop_size):
    b,c,h,w = img.size()
    assert(c==3)
    padh = crop_size - h if h < crop_size else 0
    padw = crop_size - w if w < crop_size else 0
    pad_values = -np.array(mean) / np.array(std)
    img_pad = img.new().resize_(b,c,h+padh,w+padw)
    #img_pad = F.pad(img, (0,padw,0,padh))
    for i in range(c):
        # note that pytorch pad params is in reversed orders
        img_pad[:,i,:,:] = F.pad(img[:,i,:,:], (0, padw, 0, padh), 
            value=pad_values[i])
    assert(img_pad.size(2)>=crop_size and img_pad.size(3)>=crop_size)
    return img_pad

def crop_image(img, h0, h1, w0, w1):
    return img[:,:,h0:h1,w0:w1]

def flip_image(img):
    assert(img.dim()==4)
    with torch.cuda.device_of(img):
        idx = torch.arange(img.size(3)-1, -1, -1).type_as(img).long()
    return img.index_select(3, idx)