test.py 5.22 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
###########################################################################
# Created by: Hang Zhang 
# Email: zhang.hang@rutgers.edu 
# Copyright (c) 2017
###########################################################################

import os
import numpy as np
from tqdm import tqdm

import torch
from torch.utils import data
import torchvision.transforms as transform
from torch.nn.parallel.scatter_gather import gather

import encoding.utils as utils
from encoding.nn import SegmentationLosses, BatchNorm2d
from encoding.parallel import DataParallelModel, DataParallelCriterion
from encoding.datasets import get_segmentation_dataset, test_batchify_fn
from encoding.models import get_model, get_segmentation_model, MultiEvalModule

from option import Options

torch_ver = torch.__version__[:3]
if torch_ver == '0.3':
    from torch.autograd import Variable

def test(args):
    # output folder
    outdir = 'outdir'
    if not os.path.exists(outdir):
        os.makedirs(outdir)
    # data transforms
    input_transform = transform.Compose([
        transform.ToTensor(),
        transform.Normalize([.485, .456, .406], [.229, .224, .225])])
    # dataset
    if args.eval:
        testset = get_segmentation_dataset(args.dataset, split='val', mode='testval',
                                           transform=input_transform)
    else:
        testset = get_segmentation_dataset(args.dataset, split='test', mode='test',
                                           transform=input_transform)
    # dataloader
    kwargs = {'num_workers': args.workers, 'pin_memory': True} \
        if args.cuda else {}
47
    test_data = data.DataLoader(testset, batch_size=args.test_batch_size,
Hang Zhang's avatar
Hang Zhang committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
                                drop_last=False, shuffle=False,
                                collate_fn=test_batchify_fn, **kwargs)
    # model
    if args.model_zoo is not None:
        model = get_model(args.model_zoo, pretrained=True)
    else:
        model = get_segmentation_model(args.model, dataset=args.dataset,
                                       backbone = args.backbone, aux = args.aux,
                                       se_loss = args.se_loss, norm_layer = BatchNorm2d)
        # resuming checkpoint
        if args.resume is None or not os.path.isfile(args.resume):
            raise RuntimeError("=> no checkpoint found at '{}'" .format(args.resume))
        checkpoint = torch.load(args.resume)
        # strict=False, so that it is compatible with old pytorch saved models
Hang Zhang's avatar
Hang Zhang committed
62
        model.load_state_dict(checkpoint['state_dict'])
Hang Zhang's avatar
Hang Zhang committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        print("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))

    print(model)
    evaluator = MultiEvalModule(model, testset.num_class).cuda()
    evaluator.eval()

    tbar = tqdm(test_data)
    def eval_batch(image, dst, evaluator, eval_mode):
        if eval_mode:
            # evaluation mode on validation set
            targets = dst
            outputs = evaluator.parallel_forward(image)
            batch_inter, batch_union, batch_correct, batch_label = 0, 0, 0, 0
            for output, target in zip(outputs, targets):
                correct, labeled = utils.batch_pix_accuracy(output.data.cpu(), target)
                inter, union = utils.batch_intersection_union(
                    output.data.cpu(), target, testset.num_class)
                batch_correct += correct
                batch_label += labeled
                batch_inter += inter
                batch_union += union
            return batch_correct, batch_label, batch_inter, batch_union
        else:
            # test mode, dump the results
            im_paths = dst
            outputs = evaluator.parallel_forward(image)
            predicts = [torch.max(output, 1)[1].cpu().numpy() + testset.pred_offset
                        for output in outputs]
            for predict, impath in zip(predicts, im_paths):
                mask = utils.get_mask_pallete(predict, args.dataset)
                outname = os.path.splitext(impath)[0] + '.png'
                mask.save(os.path.join(outdir, outname))
            # dummy outputs for compatible with eval mode
            return 0, 0, 0, 0

    total_inter, total_union, total_correct, total_label = \
        np.int64(0), np.int64(0), np.int64(0), np.int64(0)
    for i, (image, dst) in enumerate(tbar):
        if torch_ver == "0.3":
            image = Variable(image, volatile=True)
            correct, labeled, inter, union = eval_batch(image, dst, evaluator, args.eval)
        else:
            with torch.no_grad():
                correct, labeled, inter, union = eval_batch(image, dst, evaluator, args.eval)
        if args.eval:
108
109
            total_correct += correct.astype('int64')
            total_label += labeled.astype('int64')
Hang Zhang's avatar
Hang Zhang committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
            total_inter += inter.astype('int64')
            total_union += union.astype('int64')
            pixAcc = np.float64(1.0) * total_correct / (np.spacing(1, dtype=np.float64) + total_label)
            IoU = np.float64(1.0) * total_inter / (np.spacing(1, dtype=np.float64) + total_union)
            mIoU = IoU.mean()
            tbar.set_description(
                'pixAcc: %.4f, mIoU: %.4f' % (pixAcc, mIoU))


if __name__ == "__main__":
    args = Options().parse()
    torch.manual_seed(args.seed)
    args.test_batch_size = torch.cuda.device_count()
    test(args)