main.py 6.07 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

from __future__ import print_function

Hang Zhang's avatar
Hang Zhang committed
13
import os
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
14
15
16
import matplotlib.pyplot as plot
import importlib

Hang Zhang's avatar
Hang Zhang committed
17
18
19
20
21
22
23
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable

from option import Options
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
24
from encoding.utils import *
Hang Zhang's avatar
Hang Zhang committed
25

Hang Zhang's avatar
Hang Zhang committed
26
27
from tqdm import tqdm

Hang Zhang's avatar
Hang Zhang committed
28
# global variable
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
29
30
31
32
best_pred = 100.0
errlist_train = []
errlist_val = []

Hang Zhang's avatar
Hang Zhang committed
33
def main():
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
    # init the args
    global best_pred, errlist_train, errlist_val
    args = Options().parse()
    args.cuda = not args.no_cuda and torch.cuda.is_available()
    torch.manual_seed(args.seed)
    # plot 
    if args.plot:
        print('=>Enabling matplotlib for display:')
        plot.ion()
        plot.show()
    if args.cuda:
        torch.cuda.manual_seed(args.seed)
    # init dataloader
    dataset = importlib.import_module('dataset.'+args.dataset)
48
49
    Dataloader = dataset.Dataloader
    train_loader, test_loader = Dataloader(args).getloader()
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
50
51
    # init the model
    models = importlib.import_module('model.'+args.model)
Hang Zhang's avatar
Hang Zhang committed
52
    model = models.Net(args)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
53
54
55
    print(model)
    # criterion and optimizer
    criterion = nn.CrossEntropyLoss()
Hang Zhang's avatar
Hang Zhang committed
56
57
58
    optimizer = torch.optim.SGD(model.parameters(), lr=args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    if args.cuda:
        model.cuda()
        # Please use CUDA_VISIBLE_DEVICES to control the number of gpus
        model = torch.nn.DataParallel(model)
    # check point
    if args.resume is not None:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch'] +1
            best_pred = checkpoint['best_pred']
            errlist_train = checkpoint['errlist_train']
            errlist_val = checkpoint['errlist_val']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})"
                .format(args.resume, checkpoint['epoch']))
        else:
Zhang's avatar
v0.2.0  
Zhang committed
77
            raise RuntimeError ("=> no resume checkpoint found at '{}'".\
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
78
                format(args.resume))
Hang Zhang's avatar
Hang Zhang committed
79
80
    scheduler = LR_Scheduler(args.lr_scheduler, args.lr, args.epochs,
                             len(train_loader), args.lr_step)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
81
82
83
84
    def train(epoch):
        model.train()
        global best_pred, errlist_train
        train_loss, correct, total = 0,0,0
Hang Zhang's avatar
Hang Zhang committed
85
86
87
88
        #adjust_learning_rate(optimizer, args, epoch, best_pred)
        tbar = tqdm(train_loader, desc='\r')
        for batch_idx, (data, target) in enumerate(tbar):
            scheduler(optimizer, batch_idx, epoch, best_pred)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
            if args.cuda:
                data, target = data.cuda(), target.cuda()
            data, target = Variable(data), Variable(target)
            optimizer.zero_grad()
            output = model(data)
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()

            train_loss += loss.data[0]
            pred = output.data.max(1)[1] 
            correct += pred.eq(target.data).cpu().sum()
            total += target.size(0)
            err = 100-100.*correct/total
Hang Zhang's avatar
Hang Zhang committed
103
104
105
            tbar.set_description('\rLoss: %.3f | Err: %.3f%% (%d/%d)' % \
                (train_loss/(batch_idx+1), err, total-correct, total))

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
106
107
108
109
110
111
112
        errlist_train += [err]

    def test(epoch):
        model.eval()
        global best_pred, errlist_train, errlist_val
        test_loss, correct, total = 0,0,0
        is_best = False
Hang Zhang's avatar
Hang Zhang committed
113
114
        tbar = tqdm(test_loader, desc='\r')
        for batch_idx, (data, target) in enumerate(tbar):
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
115
116
            if args.cuda:
                data, target = data.cuda(), target.cuda()
Zhang's avatar
v0.2.0  
Zhang committed
117
118
119
120
121
122
123
124
            data, target = Variable(data), Variable(target)
            with torch.no_grad():
                output = model(data)
                test_loss += criterion(output, target).data.item()
                # get the index of the max log-probability
                pred = output.data.max(1)[1] 
                correct += pred.eq(target.data).cpu().sum().item()
                total += target.size(0)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
125

Zhang's avatar
v0.2.0  
Zhang committed
126
            err = 100-100.0*correct/total
Hang Zhang's avatar
Hang Zhang committed
127
128
            tbar.set_description('Loss: %.3f | Err: %.3f%% (%d/%d)'% \
                (test_loss/(batch_idx+1), err, total-correct, total))
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

        if args.eval:
            print('Error rate is %.3f'%err)
            return
        # save checkpoint
        errlist_val += [err]
        if err < best_pred:
            best_pred = err 
            is_best = True
        save_checkpoint({
            'epoch': epoch,
            'state_dict': model.state_dict(),
            'optimizer': optimizer.state_dict(),
            'best_pred': best_pred,
            'errlist_train':errlist_train,
            'errlist_val':errlist_val,
            }, args=args, is_best=is_best)
        if args.plot:
            plot.clf()
            plot.xlabel('Epoches: ')
            plot.ylabel('Error Rate: %')
            plot.plot(errlist_train, label='train')
            plot.plot(errlist_val, label='val')
            plot.legend(loc='upper left')
            plot.draw()
            plot.pause(0.001)

    if args.eval:
        test(args.start_epoch)
        return

    for epoch in range(args.start_epoch, args.epochs + 1):
        train(epoch)
        test(epoch)

    # save train_val curve to a file
    if args.plot:
        plot.clf()
        plot.xlabel('Epoches: ')
        plot.ylabel('Error Rate: %')
        plot.plot(errlist_train, label='train')
        plot.plot(errlist_val, label='val')
        plot.savefig("runs/%s/%s/"%(args.dataset, args.checkname)
                            +'train_val.jpg')
Hang Zhang's avatar
Hang Zhang committed
173
174

if __name__ == "__main__":
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
175
    main()