".github/vscode:/vscode.git/clone" did not exist on "dbe413668dbf9d527944b51ef5f99a60b36a90be"
syncbn.py 6.34 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import threading
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function, Variable
from ._ext import encoding_lib

class sum_square(Function):
    def forward(ctx, input):
        ctx.save_for_backward(input)
        B,C,H,W = input.size()
        with torch.cuda.device_of(input):
            xsum    = input.new().resize_(C).zero_()
            xsquare = input.new().resize_(C).zero_()
        if isinstance(input, torch.cuda.FloatTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Float_sum_square_Forward(
                    input.view(B,C,-1), xsum, xsquare)
        elif isinstance(input, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Double_sum_square_Forward( 
                    input.view(B,C,-1), xsum, xsquare)
        else:
            raise RuntimeError('Unimplemented data type!') 
        return xsum, xsquare

    def backward(ctx, gradSum, gradSquare):
        input, = ctx.saved_tensors
        B,C,H,W = input.size()
        with torch.cuda.device_of(input):
            gradInput = input.new().resize_(B,C,H*W).zero_()
        if isinstance(input, torch.cuda.FloatTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Float_sum_square_Backward(
                    gradInput, input.view(B,C,-1), gradSum, gradSquare)
        elif isinstance(input, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Double_sum_square_Backward( 
                    gradInput, input.view(B,C,-1), gradSum, gradSquare)
        else:
            raise RuntimeError('Unimplemented data type!') 
        return gradInput.view(B,C,H,W)


class batchnormtrain(Function):
    def forward(ctx, input, gamma, beta, mean, std):
        ctx.save_for_backward(input, gamma, beta, mean, std)
        assert(input.dim()==3)
        with torch.cuda.device_of(input):
            invstd = 1.0 / std
            output = input.new().resize_as_(input)
        if isinstance(input, torch.cuda.FloatTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Float_batchnorm_Forward(output, 
                    input, mean, invstd, gamma, beta)
        elif isinstance(input, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Double_batchnorm_Forward(output, 
                    input, mean, invstd, gamma, beta)
        else:
            raise RuntimeError('Unimplemented data type!')
        return output 

    def backward(ctx, gradOutput):
        input, gamma, beta, mean, std = ctx.saved_tensors
        invstd = 1.0 / std
        with torch.cuda.device_of(input):
            gradInput = gradOutput.new().resize_as_(input).zero_()
            gradGamma = gradOutput.new().resize_as_(gamma).zero_()
            gradBeta  = gradOutput.new().resize_as_(beta).zero_()
            gradMean  = gradOutput.new().resize_as_(mean).zero_()
            gradStd   = gradOutput.new().resize_as_(std).zero_()

        if isinstance(input, torch.cuda.FloatTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Float_batchnorm_Backward(
                    gradOutput, input, gradInput, gradGamma, gradBeta, 
                    mean, invstd, gamma, beta, gradMean, gradStd,
                    True) 
        elif isinstance(input, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Double_batchnorm_Backward(
                    gradOutput, input, gradInput, gradGamma, gradBeta, 
                    mean, invstd, gamma, beta, gradMean, gradStd,
                    True) 
        else:
            raise RuntimeError('Unimplemented data type!')
        return gradInput, gradGamma, gradBeta, gradMean, gradStd


class batchnormeval(Function):
    def forward(ctx, input, gamma, beta, mean, std):
        ctx.save_for_backward(input, gamma, beta, mean, std)
        assert(input.dim()==3)
        with torch.cuda.device_of(input):
            invstd = 1.0 / std
            output = input.new().resize_as_(input)
        if isinstance(input, torch.cuda.FloatTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Float_batchnorm_Forward(output, 
                    input, mean, invstd, gamma, beta)
        elif isinstance(input, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Double_batchnorm_Forward(output, 
                    input, mean, invstd, gamma, beta)
        else:
            raise RuntimeError('Unimplemented data type!')
        return output 

    def backward(ctx, gradOutput):
        input, gamma, beta, mean, std = ctx.saved_tensors
        invstd = 1.0 / std
        with torch.cuda.device_of(input):
            gradInput = gradOutput.new().resize_as_(input).zero_()
            gradGamma = gradOutput.new().resize_as_(gamma).zero_()
            gradBeta  = gradOutput.new().resize_as_(beta).zero_()
            gradMean  = gradOutput.new().resize_as_(mean).zero_()
            gradStd   = gradOutput.new().resize_as_(std).zero_()
        if isinstance(input, torch.cuda.FloatTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Float_batchnorm_Backward(
                    gradOutput, input, gradInput, gradGamma, gradBeta, 
                    mean, invstd, gamma, beta, gradMean, gradStd,
                    False) 
        elif isinstance(input, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Double_batchnorm_Backward(
                    gradOutput, input, gradInput, gradGamma, gradBeta, 
                    mean, invstd, gamma, beta, gradMean, gradStd,
                    False) 
        else:
            raise RuntimeError('Unimplemented data type!')
        return gradInput, gradGamma, gradBeta, gradMean, gradStd