encoding.py 5.41 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import threading
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function, Variable
from .._ext import encoding_lib
from ..functions import *


class Encoding(nn.Module):
    r"""
    Encoding Layer: learnable residual encoders over 3d or 4d input that is seen as a mini-batch.

    .. math::

        a_{ik} = \frac{exp(-\beta\|x_{i}-c_k\|^2)}{\sum_{j=1}^K exp(-\beta\|x_{i}-c_j\|^2)}

    Args:
        D: dimention of the features or feature channels
        K: number of codeswords

    Shape:
        - Input: :math:`X\in\mathcal{R}^{B\times N\times D}` or :math:`\mathcal{R}^{B\times D\times H\times W}` (where :math:`B` is batch, :math:`N` is total number of features or :math:`H\times W`.)
        - Output: :math:`E\in\mathcal{R}^{B\times K\times D}`
        
    Attributes:
        codewords (Tensor): the learnable codewords of shape (:math:`K\times D`)
        scale (Tensor): the learnable scale factor of visual centers

    Examples:
        >>> import encoding
        >>> import torch
        >>> import torch.nn.functional as F
        >>> from torch.autograd import Variable, gradcheck
        >>> B,C,H,W,K = 2,3,4,5,6
        >>> X = Variable(torch.cuda.DoubleTensor(B,C,H,W).uniform_(-0.5,0.5), requires_grad=True)
        >>> layer = encoding.Encoding(C,K).double().cuda()
        >>> E = layer(X)

    Reference:
        Zhang, Hang, Jia Xue, and Kristin Dana. "Deep TEN: Texture Encoding Network." *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017*
    """
    def __init__(self, D, K):
        super(Encoding, self).__init__()
        # init codewords and smoothing factor
        self.D, self.K = D, K
        self.codewords = nn.Parameter(torch.Tensor(K, D), 
            requires_grad=True)
        self.scale = nn.Parameter(torch.Tensor(K), requires_grad=True) 
        self.reset_params()
        
    def reset_params(self):
        std1 = 1./((self.K*self.D)**(1/2))
        std2 = 1./((self.K)**(1/2))
        self.codewords.data.uniform_(-std1, std1)
        self.scale.data.uniform_(-std2, std2)

    def forward(self, X):
        # input X is a 4D tensor
        assert(X.size(1)==self.D,"Encoding Layer wrong channels!")
        if X.dim() == 3:
            # BxDxN
            B, N, K, D = X.size(0), X.size(2), self.K, self.D
            X = X.transpose(1,2).contiguous()
        elif X.dim() == 4:
            # BxDxHxW
            B, N, K, D = X.size(0), X.size(2)*X.size(3), self.K, self.D
            X = X.view(B,D,-1).transpose(1,2).contiguous()
        else:
            raise RuntimeError('Encoding Layer unknown input dims!')
        # assignment weights
        A = F.softmax(ScaledL2()(X, self.codewords, self.scale))
        # aggregate
        E = aggregate()(A, X, self.codewords)
        return E

    def __repr__(self):
        return self.__class__.__name__ + '(' \
            + 'N x ' + str(self.D) + '=>' + str(self.K) + 'x' \
            + str(self.D) + ')'


class Aggregate(nn.Module):
    r"""
    Aggregate operation, aggregate the residuals (:math:`R`) with assignment weights (:math:`A`).

    .. math::
        e_{k} = \sum_{i=1}^{N} a_{ik} (r_{ik})

    Shape:
        - Input: :math:`A\in\mathcal{R}^{B\times N\times K}` :math:`R\in\mathcal{R}^{B\times N\times K\times D}` (where :math:`B` is batch, :math:`N` is total number of features, :math:`K` is number is codewords, :math:`D` is feature dimensions.)
        - Output: :math:`E\in\mathcal{R}^{B\times K\times D}`

    """ 
    def forward(self, A, R):
        return aggregateP()(A, R)


class EncodingP(nn.Module):
    def __init__(self, D, K):
        super(EncodingP, self).__init__()
        # init codewords and smoothing factor
        self.D, self.K = D, K
        self.codewords = nn.Parameter(torch.Tensor(K, D), 
            requires_grad=True)
        self.scale = nn.Parameter(torch.Tensor(K), requires_grad=True) 
        self.reset_params()
        print('EncodingP is deprecated, please use Encoding.')
        
    def reset_params(self):
        std1 = 1./((self.K*self.D)**(1/2))
        std2 = 1./((self.K)**(1/2))
        self.codewords.data.uniform_(-std1, std1)
        self.scale.data.uniform_(-std2, std2)

    def forward(self, X):
        # input X is a 4D tensor
        assert(X.size(1)==self.D,"Encoding Layer wrong channels!")
        if X.dim() == 3:
            # BxDxN
            B, N, K, D = X.size(0), X.size(2), self.K, self.D
            X = X.transpose(1,2)
        elif X.dim() == 4:
            # BxDxHxW
            B, N, K, D = X.size(0), X.size(2)*X.size(3), self.K, self.D
            X = X.view(B,D,-1).transpose(1,2)
        else:
            raise RuntimeError('Encoding Layer unknown input dims!')
        # calculate residuals
        R = residual()(X.contiguous(), self.codewords)
        # assignment weights
        A = assign(R, self.scale)
        # aggregate
        E = aggregateP()(A, R)

        return E

    def __repr__(self):
        return self.__class__.__name__ + '(' \
            + 'N x ' + str(self.D) + '=>' + str(self.K) + 'x' \
            + str(self.D) + ')'