syncbn.py 11.6 KB
Newer Older
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
1
2
3
4
5
6
7
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
Hang Zhang's avatar
sync BN  
Hang Zhang committed
8
## LICENSE file in the root directory of this source tree
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
9
10
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Hang Zhang's avatar
sync BN  
Hang Zhang committed
11
"""Synchronized Cross-GPU Batch Normalization Module"""
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
12
13
import threading
import torch
Hang Zhang's avatar
sync BN  
Hang Zhang committed
14
15
from torch.nn import Module, Sequential, Conv1d, Conv2d, ConvTranspose2d, \
    ReLU, Sigmoid, MaxPool2d, AvgPool2d, AdaptiveAvgPool2d, Dropout2d, Linear
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
16
17
from torch.nn.parameter import Parameter

Hang Zhang's avatar
sync BN  
Hang Zhang committed
18
19
from ..functions import batchnormtrain, batchnormeval, sum_square
from ..parallel import allreduce
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
20

Hang Zhang's avatar
sync BN  
Hang Zhang committed
21
22
23
24
# import standard layers for convinent use
__all__ = ['BatchNorm1d', 'BatchNorm2d', 'Module', 'Sequential', 'Conv1d',
           'Conv2d', 'ConvTranspose2d', 'ReLU', 'Sigmoid', 'MaxPool2d',
           'AvgPool2d', 'AdaptiveAvgPool2d', 'Dropout2d', 'Linear']
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
25
26

class BatchNorm1d(Module):
Hang Zhang's avatar
sync BN  
Hang Zhang committed
27
    r"""Cross-GPU Synchronized Batch normalization (SyncBN)
Hang Zhang's avatar
path  
Hang Zhang committed
28

Hang Zhang's avatar
sync BN  
Hang Zhang committed
29
30
31
    Standard BN [1]_ implementation only normalize the data within each device.
    SyncBN normalizes the input within the whole mini-batch.
    We follow the sync-onece implmentation described in the paper [2]_ .
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
32
33
34

    .. math::

Hang Zhang's avatar
sync BN  
Hang Zhang committed
35
        y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
36
37
38
39
40
41
42
43
44
45

    The mean and standard-deviation are calculated per-dimension over
    the mini-batches and gamma and beta are learnable parameter vectors
    of size C (where C is the input size).

    During training, this layer keeps a running estimate of its computed mean
    and variance. The running sum is kept with a default momentum of 0.1.

    During evaluation, this running mean/variance is used for normalization.

Hang Zhang's avatar
sync BN  
Hang Zhang committed
46
47
48
    Because the BatchNorm is done over the `C` dimension, computing statistics
    on `(N, L)` slices, it's common terminology to call this Temporal BatchNorm

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
49
50
51
52
53
54
55
    Args:
        num_features: num_features from an expected input of size
            `batch_size x num_features [x width]`
        eps: a value added to the denominator for numerical stability.
            Default: 1e-5
        momentum: the value used for the running_mean and running_var
            computation. Default: 0.1
Hang Zhang's avatar
sync BN  
Hang Zhang committed
56
57
        affine: a boolean value that when set to ``True``, gives the layer learnable
            affine parameters. Default: ``True``
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
58
59
60
61
62
63

    Shape:
        - Input: :math:`(N, C)` or :math:`(N, C, L)`
        - Output: :math:`(N, C)` or :math:`(N, C, L)` (same shape as input)

    Examples:
Hang Zhang's avatar
sync BN  
Hang Zhang committed
64
65
        >>> # Use exactly the same as standard BatchNrom1d
        >>> m = nn.BatchNorm1d(100)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        >>> output = m(input)
    """
    def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True):
        super(BatchNorm1d, self).__init__()
        self.num_features = num_features
        self.affine = affine
        self.eps = eps
        self.momentum = momentum
        if self.affine:
            self.weight = Parameter(torch.Tensor(num_features))
            self.bias = Parameter(torch.Tensor(num_features))
        else:
            self.register_parameter('weight', None)
            self.register_parameter('bias', None)
        self.register_buffer('running_mean', torch.zeros(num_features))
        self.register_buffer('running_var', torch.ones(num_features))
        self.reset_parameters()
        self.writelock = threading.Lock()
Hang Zhang's avatar
sync BN  
Hang Zhang committed
84
85
86
        nGPUs = torch.cuda.device_count()
        self.xsum = SharedTensor(nGPUs)
        self.xsquare = SharedTensor(nGPUs)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

    def reset_parameters(self):
        self.running_mean.zero_()
        self.running_var.fill_(1)
        if self.affine:
            self.weight.data.uniform_()
            self.bias.data.zero_()

    def __repr__(self):
        return ('{name}({num_features}, eps={eps}, momentum={momentum},'
                ' affine={affine})'
                .format(name=self.__class__.__name__, **self.__dict__))

    def _check_input_dim(self, input):
        if input.dim() != 3:
Hang Zhang's avatar
sync BN  
Hang Zhang committed
102
            raise ValueError('expected 4D input (got {}D input)'
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
103
104
105
                             .format(input.dim()))

    def forward(self, input):
Hang Zhang's avatar
sync BN  
Hang Zhang committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        self._check_input_dim(input)
        if self.training:
            # push the value
            isum, isquare = sum_square(input.unsqueeze(3))
            idxs = self.xsum.push(isum)
            idxq = self.xsquare.push(isquare)
            xsum = self.xsum[idxs]
            xsquare = self.xsquare[idxq]
            # calculate N
            N = len(self.xsum)*input.size(0)*input.size(2)
            mean = xsum / N
            sumvar = xsquare - xsum * xsum / N
            unbias_var = sumvar / (N - 1)
            std = (sumvar / N + self.eps).sqrt()
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
120
121
            # update running_mean and var
            self.running_mean = (1-self.momentum) * self.running_mean \
Hang Zhang's avatar
sync BN  
Hang Zhang committed
122
                + self.momentum * mean.data
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
123
            self.running_var = (1-self.momentum) * self.running_var + \
Hang Zhang's avatar
sync BN  
Hang Zhang committed
124
125
126
127
                self.momentum * unbias_var.data
            # forward
            return batchnormtrain(input, self.weight,
                                  self.bias, mean, std)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
128
        else:
Hang Zhang's avatar
sync BN  
Hang Zhang committed
129
130
131
            std = (self.running_var + self.eps).sqrt()
            return batchnormeval(input, self.weight, self.bias,
                                 self.running_mean, std)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
132
133
134


class BatchNorm2d(Module):
Hang Zhang's avatar
sync BN  
Hang Zhang committed
135
    r"""Cross-GPU Synchronized Batch normalization (SyncBN)
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
136

Hang Zhang's avatar
sync BN  
Hang Zhang committed
137
138
139
    Standard BN [1]_ implementation only normalize the data within each device.
    SyncBN normalizes the input within the whole mini-batch.
    We follow the sync-onece implmentation described in the paper [2]_ .
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
140
141
142

    .. math::

Hang Zhang's avatar
sync BN  
Hang Zhang committed
143
        y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
144
145
146
147
148
149
150
151
152
153

    The mean and standard-deviation are calculated per-dimension over
    the mini-batches and gamma and beta are learnable parameter vectors
    of size C (where C is the input size).

    During training, this layer keeps a running estimate of its computed mean
    and variance. The running sum is kept with a default momentum of 0.1.

    During evaluation, this running mean/variance is used for normalization.

Hang Zhang's avatar
sync BN  
Hang Zhang committed
154
155
156
    Because the BatchNorm is done over the `C` dimension, computing statistics
    on `(N, H, W)` slices, it's common terminology to call this Spatial BatchNorm

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
157
158
159
160
161
162
163
    Args:
        num_features: num_features from an expected input of
            size batch_size x num_features x height x width
        eps: a value added to the denominator for numerical stability.
            Default: 1e-5
        momentum: the value used for the running_mean and running_var
            computation. Default: 0.1
Hang Zhang's avatar
sync BN  
Hang Zhang committed
164
165
        affine: a boolean value that when set to ``True``, gives the layer learnable
            affine parameters. Default: ``True``
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
166
167
168
169
170

    Shape:
        - Input: :math:`(N, C, H, W)`
        - Output: :math:`(N, C, H, W)` (same shape as input)

Hang Zhang's avatar
sync BN  
Hang Zhang committed
171
172
173
174
    Reference:
        .. [1] Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." *ICML 2015*
        .. [2] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, and Amit Agrawal. "Context Encoding for Semantic Segmentation." *CVPR 2018*

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
175
    Examples:
Hang Zhang's avatar
sync BN  
Hang Zhang committed
176
177
        >>> # Use exactly the same as standard BatchNrom2d
        >>> m = nn.BatchNorm2d(100)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        >>> output = m(input)
    """
    def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True):
        super(BatchNorm2d, self).__init__()
        self.num_features = num_features
        self.affine = affine
        self.eps = eps
        self.momentum = momentum
        if self.affine:
            self.weight = Parameter(torch.Tensor(num_features))
            self.bias = Parameter(torch.Tensor(num_features))
        else:
            self.register_parameter('weight', None)
            self.register_parameter('bias', None)
        self.register_buffer('running_mean', torch.zeros(num_features))
        self.register_buffer('running_var', torch.ones(num_features))
        self.reset_parameters()
        self.writelock = threading.Lock()
Hang Zhang's avatar
sync BN  
Hang Zhang committed
196
197
        nGPUs = torch.cuda.device_count()
        self.xsum, self.xsquare = SharedTensor(nGPUs), SharedTensor(nGPUs)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

    def reset_parameters(self):
        self.running_mean.zero_()
        self.running_var.fill_(1)
        if self.affine:
            self.weight.data.uniform_()
            self.bias.data.zero_()

    def __repr__(self):
        return ('{name}({num_features}, eps={eps}, momentum={momentum},'
                ' affine={affine})'
                .format(name=self.__class__.__name__, **self.__dict__))

    def _check_input_dim(self, input):
        if input.dim() != 4:
            raise ValueError('expected 4D input (got {}D input)'
                             .format(input.dim()))

    def forward(self, input):
Hang Zhang's avatar
sync BN  
Hang Zhang committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
        self._check_input_dim(input)
        if self.training:
            # push the value
            isum, isquare = sum_square(input)
            idxs = self.xsum.push(isum)
            idxq = self.xsquare.push(isquare)
            xsum = self.xsum[idxs]
            xsquare = self.xsquare[idxq]
            # calculate N
            N = len(self.xsum)*input.size(0)*input.size(2)*input.size(3)
            mean = xsum / N
            sumvar = xsquare - xsum * xsum / N
            unbias_var = sumvar / (N - 1)
            std = (sumvar / N + self.eps).sqrt()
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
231
232
            # update running_mean and var
            self.running_mean = (1-self.momentum) * self.running_mean \
Hang Zhang's avatar
sync BN  
Hang Zhang committed
233
                + self.momentum * mean.data
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
234
            self.running_var = (1-self.momentum) * self.running_var + \
Hang Zhang's avatar
sync BN  
Hang Zhang committed
235
236
237
238
239
240
241
242
                self.momentum * unbias_var.data
            # forward
            B, C, H, W = input.size()
            output = batchnormtrain(
                input.view(B, C, -1).contiguous(), self.weight,
                self.bias, mean,
                std)
            return output.view(B, C, H, W)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
243
        else:
Hang Zhang's avatar
sync BN  
Hang Zhang committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
            std = (self.running_var + self.eps).sqrt()
            B, C, H, W = input.size()
            return batchnormeval(input.view(B, C, -1).contiguous(), self.weight, self.bias,
                                 self.running_mean, std).view(B, C, H, W)


class SharedTensor(object):
    """Shared Tensor
    """
    def __init__(self, nGPUs):
        self.mutex = threading.Lock()
        self.all_tasks_done = threading.Condition(self.mutex)
        self.nGPUs = nGPUs
        self._clear()

    def _clear(self):
        self.list = []
        self.push_tasks = self.nGPUs
        self.reduce_tasks = self.nGPUs

    def push(self, t):
        """push a Tensor
        """
        with self.mutex:
            if self.push_tasks == 0:
                self._clear()
            self.list.append(t)
            idx = len(self.list) - 1
            self.push_tasks -= 1

        with self.all_tasks_done:
            if self.push_tasks == 0:
                self.all_tasks_done.notify_all()
            while self.push_tasks:
                self.all_tasks_done.wait()
        return idx

    def _reduce(self):
        with self.mutex:
            if self.reduce_tasks == self.nGPUs:
                assert(len(self.list) == self.nGPUs)
                self.outlist = allreduce(*self.list)
                self.reduce_tasks -= 1
            else:
                self.reduce_tasks -= 1

        with self.all_tasks_done:
            if self.reduce_tasks == 0:
                self.all_tasks_done.notify_all()
            while self.reduce_tasks:
                self.all_tasks_done.wait()

    def __getitem__(self, idx):
        self._reduce()
        return self.outlist[idx]

    def __len__(self):
        return len(self.list)

    def __repr__(self):
        return ('SharedTensor')