"vscode:/vscode.git/clone" did not exist on "7a1323b62fa1a8880051ab91d559a6e6248bee1c"
deepten.py 3.58 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import torch
import torch.nn as nn

from ..nn import Encoding, View, Normalize
Hang Zhang's avatar
Hang Zhang committed
15
from .backbone import resnet50s, resnet101s, resnet152s
Hang Zhang's avatar
Hang Zhang committed
16
17
18
19
20
21
22
23
24

__all__ = ['DeepTen', 'get_deepten', 'get_deepten_resnet50_minc']

class DeepTen(nn.Module):
    def __init__(self, nclass, backbone):
        super(DeepTen, self).__init__()
        self.backbone = backbone
        # copying modules from pretrained models
        if self.backbone == 'resnet50':
Hang Zhang's avatar
Hang Zhang committed
25
            self.pretrained = resnet50s(pretrained=True, dilated=False)
Hang Zhang's avatar
Hang Zhang committed
26
        elif self.backbone == 'resnet101':
Hang Zhang's avatar
Hang Zhang committed
27
            self.pretrained = resnet101s(pretrained=True, dilated=False)
Hang Zhang's avatar
Hang Zhang committed
28
        elif self.backbone == 'resnet152':
Hang Zhang's avatar
Hang Zhang committed
29
            self.pretrained = resnet152s(pretrained=True, dilated=False)
Hang Zhang's avatar
Hang Zhang committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        else:
            raise RuntimeError('unknown backbone: {}'.format(self.backbone))
        n_codes = 32
        self.head = nn.Sequential(
            nn.Conv2d(2048, 128, 1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            Encoding(D=128,K=n_codes),
            View(-1, 128*n_codes),
            Normalize(),
            nn.Linear(128*n_codes, nclass),
        )

    def forward(self, x):
        _, _, h, w = x.size()
        x = self.pretrained.conv1(x)
        x = self.pretrained.bn1(x)
        x = self.pretrained.relu(x)
        x = self.pretrained.maxpool(x)
        x = self.pretrained.layer1(x)
        x = self.pretrained.layer2(x)
        x = self.pretrained.layer3(x)
        x = self.pretrained.layer4(x)
        return self.head(x)

def get_deepten(dataset='pascal_voc', backbone='resnet50', pretrained=False,
                root='~/.encoding/models', **kwargs):
    r"""DeepTen model from the paper `"Deep TEN: Texture Encoding Network"
    <https://arxiv.org/pdf/1612.02844v1.pdf>`_
    Parameters
    ----------
    dataset : str, default pascal_voc
        The dataset that model pretrained on. (pascal_voc, ade20k)
    pretrained : bool, default False
        Whether to load the pretrained weights for model.
    root : str, default '~/.encoding/models'
        Location for keeping the model parameters.
    Examples
    --------
    >>> model = get_deepten(dataset='minc', backbone='resnet50', pretrained=False)
    >>> print(model)
    """
    from ..datasets import datasets, acronyms
    model = DeepTen(datasets[dataset.lower()].NUM_CLASS, backbone=backbone, **kwargs)
    if pretrained:
        from .model_store import get_model_file
        model.load_state_dict(torch.load(
            get_model_file('deepten_%s_%s'%(backbone, acronyms[dataset]), root=root)))
    return model

def get_deepten_resnet50_minc(pretrained=False, root='~/.encoding/models', **kwargs):
    r"""DeepTen model from the paper `"Deep TEN: Texture Encoding Network"
    <https://arxiv.org/pdf/1612.02844v1.pdf>`_
    Parameters
    ----------
    pretrained : bool, default False
        Whether to load the pretrained weights for model.
    root : str, default '~/.encoding/models'
        Location for keeping the model parameters.


    Examples
    --------
    >>> model = get_deepten_resnet50_minc(pretrained=True)
    >>> print(model)
    """
    return get_deepten(dataset='minc', backbone='resnet50', pretrained=pretrained,
                       root=root, **kwargs)