"vscode:/vscode.git/clone" did not exist on "bf3edc2c6040da2fa8c40957a40fe9ec03445fc2"
syncbn.py 10.5 KB
Newer Older
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
1
2
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
Zhang's avatar
v0.4.2  
Zhang committed
3
4
## Email: zhanghang0704@gmail.com
## Copyright (c) 2018
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
5
6
##
## This source code is licensed under the MIT-style license found in the
Hang Zhang's avatar
sync BN  
Hang Zhang committed
7
## LICENSE file in the root directory of this source tree
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
8
9
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Zhang's avatar
Zhang committed
10
"""Synchronized Cross-GPU Batch Normalization functions"""
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
11
import torch
Hang Zhang's avatar
Hang Zhang committed
12
import torch.cuda.comm as comm
Hang Zhang's avatar
Hang Zhang committed
13
from torch.autograd import Function
Hang Zhang's avatar
Hang Zhang committed
14
from torch.autograd.function import once_differentiable
Zhang's avatar
v0.4.2  
Zhang committed
15
from .. import lib
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
16

Hang Zhang's avatar
Hang Zhang committed
17
__all__ = ['moments', 'syncbatchnorm', 'inp_syncbatchnorm']
Zhang's avatar
Zhang committed
18

Hang Zhang's avatar
Hang Zhang committed
19
class moments_(Function):
Hang Zhang's avatar
Hang Zhang committed
20
21
22
23
24
25
    @staticmethod
    def forward(ctx, x):
        if x.is_cuda:
            ex, ex2 = lib.gpu.expectation_forward(x)
        else:
            raise NotImplemented
Hang Zhang's avatar
Hang Zhang committed
26
        ctx.save_for_backward(x)
Hang Zhang's avatar
Hang Zhang committed
27
        return ex, ex2
Zhang's avatar
Zhang committed
28

Hang Zhang's avatar
sync BN  
Hang Zhang committed
29
    @staticmethod
Hang Zhang's avatar
Hang Zhang committed
30
    def backward(ctx, dex, dex2):
Hang Zhang's avatar
Hang Zhang committed
31
32
        x, = ctx.saved_tensors
        if dex.is_cuda:
Hang Zhang's avatar
Hang Zhang committed
33
            dx = lib.gpu.expectation_backward(x, dex, dex2)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
34
        else:
Hang Zhang's avatar
Hang Zhang committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
            raise NotImplemented
        return dx

class syncbatchnorm_(Function):
    @classmethod
    def forward(cls, ctx, x, gamma, beta, running_mean, running_var,
                extra, sync=True, training=True, momentum=0.1, eps=1e-05,
                activation="none", slope=0.01):
        # save context
        cls._parse_extra(ctx, extra)
        ctx.sync = sync
        ctx.training = training
        ctx.momentum = momentum
        ctx.eps = eps
        ctx.activation = activation
        ctx.slope = slope
        assert activation == 'none'

        # continous inputs
        x = x.contiguous()
        gamma = gamma.contiguous()
        beta = beta.contiguous()

        if ctx.training:
            if x.is_cuda:
                _ex, _exs = lib.gpu.expectation_forward(x)
            else:
                raise NotImplemented

            if ctx.sync:
                if ctx.is_master:
                    _ex, _exs = [_ex.unsqueeze(0)], [_exs.unsqueeze(0)]
                    for _ in range(ctx.master_queue.maxsize):
                        _ex_w, _exs_w = ctx.master_queue.get()
                        ctx.master_queue.task_done()
                        _ex.append(_ex_w.unsqueeze(0))
                        _exs.append(_exs_w.unsqueeze(0))

                    _ex = comm.gather(_ex).mean(0)
                    _exs = comm.gather(_exs).mean(0)

                    tensors = comm.broadcast_coalesced((_ex, _exs), [_ex.get_device()] + ctx.worker_ids)
                    for ts, queue in zip(tensors[1:], ctx.worker_queues):
                        queue.put(ts)
                else:
                    ctx.master_queue.put((_ex, _exs))
                    _ex, _exs = ctx.worker_queue.get()
                    ctx.worker_queue.task_done()

            # Update running stats
            _var = _exs - _ex ** 2
            running_mean.mul_((1 - ctx.momentum)).add_(ctx.momentum * _ex)
            running_var.mul_((1 - ctx.momentum)).add_(ctx.momentum * _var)

            # Mark in-place modified tensors
            ctx.mark_dirty(running_mean, running_var)
        else:
            _ex, _var = running_mean.contiguous(), running_var.contiguous()
            _exs = _var + _ex ** 2 

        # BN forward + activation
        if x.is_cuda:
            y = lib.gpu.batchnorm_forward(x, _ex, _exs, gamma, beta, ctx.eps)
        else:
            y = lib.cpu.batchnorm_forward(x, _ex, _exs, gamma, beta, ctx.eps)

        # Output
        ctx.save_for_backward(x, _ex, _exs, gamma, beta)
        return y
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
104

Hang Zhang's avatar
sync BN  
Hang Zhang committed
105
    @staticmethod
Hang Zhang's avatar
Hang Zhang committed
106
107
108
109
110
111
112
113
114
    @once_differentiable
    def backward(ctx, dz):
        x, _ex, _exs, gamma, beta = ctx.saved_tensors
        dz = dz.contiguous()

        # BN backward
        if dz.is_cuda:
            dx, _dex, _dexs, dgamma, dbeta = \
                lib.gpu.batchnorm_backward(dz, x, _ex, _exs, gamma, beta, ctx.eps)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
115
        else:
Zhang's avatar
v0.4.2  
Zhang committed
116
            raise NotImplemented
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
117

Hang Zhang's avatar
Hang Zhang committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
        if ctx.training:
            if ctx.sync:
                if ctx.is_master:
                    _dex, _dexs = [_dex.unsqueeze(0)], [_dexs.unsqueeze(0)]
                    for _ in range(ctx.master_queue.maxsize):
                        _dex_w, _dexs_w = ctx.master_queue.get()
                        ctx.master_queue.task_done()
                        _dex.append(_dex_w.unsqueeze(0))
                        _dexs.append(_dexs_w.unsqueeze(0))

                    _dex = comm.gather(_dex).mean(0)
                    _dexs = comm.gather(_dexs).mean(0)

                    tensors = comm.broadcast_coalesced((_dex, _dexs), [_dex.get_device()] + ctx.worker_ids)
                    for ts, queue in zip(tensors[1:], ctx.worker_queues):
                        queue.put(ts)
                else:
                    ctx.master_queue.put((_dex, _dexs))
                    _dex, _dexs = ctx.worker_queue.get()
                    ctx.worker_queue.task_done()

            if x.is_cuda:
                dx_ = lib.gpu.expectation_backward(x, _dex, _dexs)
            else:
                raise NotImplemented
            dx = dx + dx_

        return dx, dgamma, dbeta, None, None, None, None, None, None, None, None, None
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
146

Zhang's avatar
v0.4.2  
Zhang committed
147
    @staticmethod
Hang Zhang's avatar
Hang Zhang committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    def _parse_extra(ctx, extra):
        ctx.is_master = extra["is_master"]
        if ctx.is_master:
            ctx.master_queue = extra["master_queue"]
            ctx.worker_queues = extra["worker_queues"]
            ctx.worker_ids = extra["worker_ids"]
        else:
            ctx.master_queue = extra["master_queue"]
            ctx.worker_queue = extra["worker_queue"]

def _act_forward(ctx, x):
    if ctx.activation.lower() == "leaky_relu":
        if x.is_cuda:
            lib.gpu.leaky_relu_forward(x, ctx.slope)
        else:
            raise NotImplemented
    else:
        assert activation == 'none'

def _act_backward(ctx, x, dx):
    if ctx.activation.lower() == "leaky_relu":
        if x.is_cuda:
            lib.gpu.leaky_relu_backward(x, dx, ctx.slope)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
171
        else:
Hang Zhang's avatar
Hang Zhang committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
            raise NotImplemented
    else:
        assert activation == 'none'

class inp_syncbatchnorm_(Function):
    @classmethod
    def forward(cls, ctx, x, gamma, beta, running_mean, running_var,
                extra, sync=True, training=True, momentum=0.1, eps=1e-05,
                activation="none", slope=0.01):
        # save context
        cls._parse_extra(ctx, extra)
        ctx.sync = sync
        ctx.training = training
        ctx.momentum = momentum
        ctx.eps = eps
        ctx.activation = activation
        ctx.slope = slope

        # continous inputs
        x = x.contiguous()
        gamma = gamma.contiguous()
        beta = beta.contiguous()

        if ctx.training:
            if x.is_cuda:
                _ex, _exs = lib.gpu.expectation_forward(x)
            else:
                raise NotImplemented

            if ctx.sync:
                if ctx.is_master:
                    _ex, _exs = [_ex.unsqueeze(0)], [_exs.unsqueeze(0)]
                    for _ in range(ctx.master_queue.maxsize):
                        _ex_w, _exs_w = ctx.master_queue.get()
                        ctx.master_queue.task_done()
                        _ex.append(_ex_w.unsqueeze(0))
                        _exs.append(_exs_w.unsqueeze(0))

                    _ex = comm.gather(_ex).mean(0)
                    _exs = comm.gather(_exs).mean(0)

                    tensors = comm.broadcast_coalesced((_ex, _exs), [_ex.get_device()] + ctx.worker_ids)
                    for ts, queue in zip(tensors[1:], ctx.worker_queues):
                        queue.put(ts)
                else:
                    ctx.master_queue.put((_ex, _exs))
                    _ex, _exs = ctx.worker_queue.get()
                    ctx.worker_queue.task_done()

            # Update running stats
            _var = _exs - _ex ** 2
            running_mean.mul_((1 - ctx.momentum)).add_(ctx.momentum * _ex)
            running_var.mul_((1 - ctx.momentum)).add_(ctx.momentum * _var)

            # Mark in-place modified tensors
            ctx.mark_dirty(x, running_mean, running_var)
        else:
            _ex, _var = running_mean.contiguous(), running_var.contiguous()
            _exs = _var + _ex ** 2 
            ctx.mark_dirty(x)

        # BN forward + activation
        if x.is_cuda:
            lib.gpu.batchnorm_inp_forward(x, _ex, _exs, gamma, beta, ctx.eps)
        else:
            raise NotImplemented

        _act_forward(ctx, x)

        # Output
        ctx.save_for_backward(x, _ex, _exs, gamma, beta)
        return x
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
244

Zhang's avatar
v0.4.2  
Zhang committed
245
    @staticmethod
Hang Zhang's avatar
Hang Zhang committed
246
247
248
249
250
251
252
253
254
255
256
257
    @once_differentiable
    def backward(ctx, dz):
        z, _ex, _exs, gamma, beta = ctx.saved_tensors
        dz = dz.contiguous()

        # Undo activation
        _act_backward(ctx, z, dz)

        # BN backward
        if dz.is_cuda:
            dx, _dex, _dexs, dgamma, dbeta = \
                lib.gpu.batchnorm_inp_backward(dz, z, _ex, _exs, gamma, beta, ctx.eps)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
258
        else:
Zhang's avatar
v0.4.2  
Zhang committed
259
            raise NotImplemented
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
260

Hang Zhang's avatar
Hang Zhang committed
261
262
263
264
265
266
267
268
269
        if ctx.training:
            if ctx.sync:
                if ctx.is_master:
                    _dex, _dexs = [_dex.unsqueeze(0)], [_dexs.unsqueeze(0)]
                    for _ in range(ctx.master_queue.maxsize):
                        _dex_w, _dexs_w = ctx.master_queue.get()
                        ctx.master_queue.task_done()
                        _dex.append(_dex_w.unsqueeze(0))
                        _dexs.append(_dexs_w.unsqueeze(0))
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
270

Hang Zhang's avatar
Hang Zhang committed
271
272
                    _dex = comm.gather(_dex).mean(0)
                    _dexs = comm.gather(_dexs).mean(0)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
273

Hang Zhang's avatar
Hang Zhang committed
274
275
276
277
278
279
280
                    tensors = comm.broadcast_coalesced((_dex, _dexs), [_dex.get_device()] + ctx.worker_ids)
                    for ts, queue in zip(tensors[1:], ctx.worker_queues):
                        queue.put(ts)
                else:
                    ctx.master_queue.put((_dex, _dexs))
                    _dex, _dexs = ctx.worker_queue.get()
                    ctx.worker_queue.task_done()
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
281

Hang Zhang's avatar
Hang Zhang committed
282
283
284
285
            if z.is_cuda:
                lib.gpu.expectation_inp_backward(dx, z, _dex, _dexs, _ex, _exs, gamma, beta, ctx.eps)
            else:
                raise NotImplemented
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
286

Hang Zhang's avatar
Hang Zhang committed
287
        return dx, dgamma, dbeta, None, None, None, None, None, None, None, None, None
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
288

Hang Zhang's avatar
Hang Zhang committed
289
290
291
292
293
294
295
296
297
298
    @staticmethod
    def _parse_extra(ctx, extra):
        ctx.is_master = extra["is_master"]
        if ctx.is_master:
            ctx.master_queue = extra["master_queue"]
            ctx.worker_queues = extra["worker_queues"]
            ctx.worker_ids = extra["worker_ids"]
        else:
            ctx.master_queue = extra["master_queue"]
            ctx.worker_queue = extra["worker_queue"]
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
299

Hang Zhang's avatar
Hang Zhang committed
300
moments = moments_.apply
Hang Zhang's avatar
Hang Zhang committed
301
302
syncbatchnorm = syncbatchnorm_.apply
inp_syncbatchnorm = inp_syncbatchnorm_.apply