"vscode:/vscode.git/clone" did not exist on "ab079f27cf8c8c570d82711d209196e8240d9dd8"
encnet.py 7.56 KB
Newer Older
Zhang's avatar
v0.4.2  
Zhang committed
1
2
3
4
5
6
7
8
9
###########################################################################
# Created by: Hang Zhang 
# Email: zhang.hang@rutgers.edu 
# Copyright (c) 2017
###########################################################################

import torch
from torch.autograd import Variable
import torch.nn as nn
Hang Zhang's avatar
Hang Zhang committed
10
import torch.nn.functional as F
Zhang's avatar
v0.4.2  
Zhang committed
11
12
13
14
15

import encoding
from .base import BaseNet
from .fcn import FCNHead

Hang Zhang's avatar
Hang Zhang committed
16
__all__ = ['EncNet', 'EncModule', 'get_encnet', 'get_encnet_resnet50_pcontext',
Hang Zhang's avatar
Hang Zhang committed
17
           'get_encnet_resnet101_pcontext', 'get_encnet_resnet50_ade']
Zhang's avatar
v0.4.2  
Zhang committed
18
19

class EncNet(BaseNet):
Hang Zhang's avatar
Hang Zhang committed
20
    def __init__(self, nclass, backbone, aux=True, se_loss=True, lateral=False,
Zhang's avatar
v0.4.2  
Zhang committed
21
                 norm_layer=nn.BatchNorm2d, **kwargs):
Hang Zhang's avatar
Hang Zhang committed
22
23
        super(EncNet, self).__init__(nclass, backbone, aux, se_loss,
                                     norm_layer=norm_layer, **kwargs)
Zhang's avatar
v0.4.2  
Zhang committed
24
        self.head = EncHead(self.nclass, in_channels=2048, se_loss=se_loss,
Hang Zhang's avatar
Hang Zhang committed
25
26
                            lateral=lateral, norm_layer=norm_layer,
                            up_kwargs=self._up_kwargs)
Zhang's avatar
v0.4.2  
Zhang committed
27
28
29
30
31
        if aux:
            self.auxlayer = FCNHead(1024, nclass, norm_layer=norm_layer)

    def forward(self, x):
        imsize = x.size()[2:]
Hang Zhang's avatar
Hang Zhang committed
32
        features = self.base_forward(x)
Zhang's avatar
v0.4.2  
Zhang committed
33

Hang Zhang's avatar
Hang Zhang committed
34
35
        x = list(self.head(*features))
        x[0] = F.upsample(x[0], imsize, **self._up_kwargs)
Zhang's avatar
v0.4.2  
Zhang committed
36
        if self.aux:
Hang Zhang's avatar
Hang Zhang committed
37
38
            auxout = self.auxlayer(features[2])
            auxout = F.upsample(auxout, imsize, **self._up_kwargs)
Zhang's avatar
v0.4.2  
Zhang committed
39
40
41
42
43
44
45
            x.append(auxout)
        return tuple(x)


class EncModule(nn.Module):
    def __init__(self, in_channels, nclass, ncodes=32, se_loss=True, norm_layer=None):
        super(EncModule, self).__init__()
Hang Zhang's avatar
Hang Zhang committed
46
47
        norm_layer = nn.BatchNorm1d if isinstance(norm_layer, nn.BatchNorm2d) else \
            encoding.nn.BatchNorm1d
Zhang's avatar
v0.4.2  
Zhang committed
48
49
        self.se_loss = se_loss
        self.encoding = nn.Sequential(
Hang Zhang's avatar
Hang Zhang committed
50
51
52
            nn.Conv2d(in_channels, in_channels, 1, bias=False),
            nn.BatchNorm2d(in_channels),
            nn.ReLU(inplace=True),
Zhang's avatar
v0.4.2  
Zhang committed
53
54
55
            encoding.nn.Encoding(D=in_channels, K=ncodes),
            norm_layer(ncodes),
            nn.ReLU(inplace=True),
Hang Zhang's avatar
Hang Zhang committed
56
            encoding.nn.Mean(dim=1))
Zhang's avatar
v0.4.2  
Zhang committed
57
58
59
60
61
62
63
64
65
66
67
        self.fc = nn.Sequential(
            nn.Linear(in_channels, in_channels),
            nn.Sigmoid())
        if self.se_loss:
            self.selayer = nn.Linear(in_channels, nclass)

    def forward(self, x):
        en = self.encoding(x)
        b, c, _, _ = x.size()
        gamma = self.fc(en)
        y = gamma.view(b, c, 1, 1)
Hang Zhang's avatar
Hang Zhang committed
68
        outputs = [F.relu_(x + x * y)]
Zhang's avatar
v0.4.2  
Zhang committed
69
70
71
72
73
74
        if self.se_loss:
            outputs.append(self.selayer(en))
        return tuple(outputs)


class EncHead(nn.Module):
Hang Zhang's avatar
Hang Zhang committed
75
    def __init__(self, out_channels, in_channels, se_loss=True, lateral=True,
Zhang's avatar
v0.4.2  
Zhang committed
76
77
                 norm_layer=None, up_kwargs=None):
        super(EncHead, self).__init__()
Hang Zhang's avatar
Hang Zhang committed
78
79
80
        self.se_loss = se_loss
        self.lateral = lateral
        self.up_kwargs = up_kwargs
Zhang's avatar
v0.4.2  
Zhang committed
81
82
83
        self.conv5 = nn.Sequential(
            nn.Conv2d(in_channels, 512, 3, padding=1, bias=False),
            norm_layer(512),
Hang Zhang's avatar
Hang Zhang committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
            nn.ReLU(inplace=True))
        if lateral:
            self.connect = nn.ModuleList([
                nn.Sequential(
                    nn.Conv2d(512, 512, kernel_size=1, bias=False),
                    norm_layer(512),
                    nn.ReLU(inplace=True)),
                nn.Sequential(
                    nn.Conv2d(1024, 512, kernel_size=1, bias=False),
                    norm_layer(512),
                    nn.ReLU(inplace=True)),
            ])
            self.fusion = nn.Sequential(
                    nn.Conv2d(3*512, 512, kernel_size=3, padding=1, bias=False),
                    norm_layer(512),
                    nn.ReLU(inplace=True))
Zhang's avatar
v0.4.2  
Zhang committed
100
101
        self.encmodule = EncModule(512, out_channels, ncodes=32,
            se_loss=se_loss, norm_layer=norm_layer)
Hang Zhang's avatar
Hang Zhang committed
102
103
104
105
106
107
108
109
110
111
112
        self.conv6 = nn.Sequential(nn.Dropout2d(0.1, False),
                                   nn.Conv2d(512, out_channels, 1))

    def forward(self, *inputs):
        feat = self.conv5(inputs[-1])
        if self.lateral:
            c2 = self.connect[0](inputs[1])
            c3 = self.connect[1](inputs[2])
            feat = self.fusion(torch.cat([feat, c2, c3], 1))
        outs = list(self.encmodule(feat))
        outs[0] = self.conv6(outs[0])
Zhang's avatar
v0.4.2  
Zhang committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        return tuple(outs)


def get_encnet(dataset='pascal_voc', backbone='resnet50', pretrained=False,
               root='~/.encoding/models', **kwargs):
    r"""EncNet model from the paper `"Context Encoding for Semantic Segmentation"
    <https://arxiv.org/pdf/1803.08904.pdf>`_

    Parameters
    ----------
    dataset : str, default pascal_voc
        The dataset that model pretrained on. (pascal_voc, ade20k)
    backbone : str, default resnet50
        The backbone network. (resnet50, 101, 152)
    pretrained : bool, default False
        Whether to load the pretrained weights for model.
    root : str, default '~/.encoding/models'
        Location for keeping the model parameters.


    Examples
    --------
    >>> model = get_encnet(dataset='pascal_voc', backbone='resnet50', pretrained=False)
    >>> print(model)
    """
    acronyms = {
        'pascal_voc': 'voc',
        'ade20k': 'ade',
        'pcontext': 'pcontext',
    }
Hang Zhang's avatar
Hang Zhang committed
143
    kwargs['lateral'] = True if dataset.lower() == 'pcontext' else False
Zhang's avatar
v0.4.2  
Zhang committed
144
145
    # infer number of classes
    from ..datasets import datasets, VOCSegmentation, VOCAugSegmentation, ADE20KSegmentation
Hang Zhang's avatar
Hang Zhang committed
146
    model = EncNet(datasets[dataset.lower()].NUM_CLASS, backbone=backbone, root=root, **kwargs)
Zhang's avatar
v0.4.2  
Zhang committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    if pretrained:
        from .model_store import get_model_file
        model.load_state_dict(torch.load(
            get_model_file('encnet_%s_%s'%(backbone, acronyms[dataset]), root=root)))
    return model

def get_encnet_resnet50_pcontext(pretrained=False, root='~/.encoding/models', **kwargs):
    r"""EncNet-PSP model from the paper `"Context Encoding for Semantic Segmentation"
    <https://arxiv.org/pdf/1803.08904.pdf>`_

    Parameters
    ----------
    pretrained : bool, default False
        Whether to load the pretrained weights for model.
    root : str, default '~/.encoding/models'
        Location for keeping the model parameters.


    Examples
    --------
    >>> model = get_encnet_resnet50_pcontext(pretrained=True)
    >>> print(model)
    """
Hang Zhang's avatar
Hang Zhang committed
170
    return get_encnet('pcontext', 'resnet50', pretrained, root=root, aux=False, **kwargs)
Hang Zhang's avatar
Hang Zhang committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

def get_encnet_resnet101_pcontext(pretrained=False, root='~/.encoding/models', **kwargs):
    r"""EncNet-PSP model from the paper `"Context Encoding for Semantic Segmentation"
    <https://arxiv.org/pdf/1803.08904.pdf>`_

    Parameters
    ----------
    pretrained : bool, default False
        Whether to load the pretrained weights for model.
    root : str, default '~/.encoding/models'
        Location for keeping the model parameters.


    Examples
    --------
    >>> model = get_encnet_resnet101_pcontext(pretrained=True)
    >>> print(model)
    """
Hang Zhang's avatar
Hang Zhang committed
189
    return get_encnet('pcontext', 'resnet101', pretrained, root=root, aux=False, **kwargs)
Hang Zhang's avatar
Hang Zhang committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

def get_encnet_resnet50_ade(pretrained=False, root='~/.encoding/models', **kwargs):
    r"""EncNet-PSP model from the paper `"Context Encoding for Semantic Segmentation"
    <https://arxiv.org/pdf/1803.08904.pdf>`_

    Parameters
    ----------
    pretrained : bool, default False
        Whether to load the pretrained weights for model.
    root : str, default '~/.encoding/models'
        Location for keeping the model parameters.


    Examples
    --------
    >>> model = get_encnet_resnet50_ade(pretrained=True)
    >>> print(model)
    """
Hang Zhang's avatar
Hang Zhang committed
208
    return get_encnet('ade20k', 'resnet50', pretrained, root=root, aux=True, **kwargs)