roi_align_kernel.cu 12.9 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
#include <torch/extension.h>
Hang Zhang's avatar
Hang Zhang committed
2
#include <ATen/ATen.h>
Hang Zhang's avatar
Hang Zhang committed
3
#include <ATen/cuda/CUDAContext.h>
Hang Zhang's avatar
Hang Zhang committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

#include <cuda.h>
#include <cuda_runtime.h>

namespace {

#define CUDA_1D_KERNEL_LOOP(i, n)                                 \
  for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
       i += blockDim.x * gridDim.x)

// The number of cuda threads to use. 512 is used for backward compatibility
constexpr int ROI_CUDA_NUM_THREADS = 512;

// The maximum number of blocks to use in the default kernel call.
constexpr int ROI_MAXIMUM_NUM_BLOCKS = 4096;

/**
 * @brief Compute the number of blocks needed to run N threads.
 */
inline int ROI_GET_BLOCKS(const int N) {
  return std::max(
      std::min(
          (N + ROI_CUDA_NUM_THREADS - 1) / ROI_CUDA_NUM_THREADS,
          ROI_MAXIMUM_NUM_BLOCKS),
      // Use at least 1 block, since CUDA does not allow empty block
      1);
}

template <typename T>
__device__ T bilinear_interpolate(
    const T* bottom_data,
    const int height,
    const int width,
    T y,
    T x,
    const int index /* index for debug only*/) {
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    return 0;
  }

  if (y <= 0) {
    y = 0;
  }
  if (x <= 0) {
    x = 0;
  }

  int y_low = static_cast<int>(y);
  int x_low = static_cast<int>(x);
  int y_high;
  int x_high;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;
  // do bilinear interpolation
  T v1 = bottom_data[y_low * width + x_low];
  T v2 = bottom_data[y_low * width + x_high];
  T v3 = bottom_data[y_high * width + x_low];
  T v4 = bottom_data[y_high * width + x_high];
  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  return val;
}

template <typename T>
__global__ void RoIAlignForwardKernel(
    const int nthreads,
    const T* bottom_data,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const int sampling_ratio,
    const T* bottom_rois,
    T* top_data) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_bottom_rois = bottom_rois + n * 5;
    int roi_batch_ind = offset_bottom_rois[0];

    // Do not using rounding; this implementation detail is critical
    T roi_start_w = offset_bottom_rois[1] * spatial_scale;
    T roi_start_h = offset_bottom_rois[2] * spatial_scale;
    T roi_end_w = offset_bottom_rois[3] * spatial_scale;
    T roi_end_h = offset_bottom_rois[4] * spatial_scale;

    // Force malformed ROIs to be 1x1
    T roi_width = max(roi_end_w - roi_start_w, (T)1.);
    T roi_height = max(roi_end_h - roi_start_h, (T)1.);
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    const T* offset_bottom_data =
        bottom_data + (roi_batch_ind * channels + c) * height * width;

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height);  // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
    const T count = roi_bin_grid_h * roi_bin_grid_w;  // e.g. = 4

    T output_val = 0.;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) {  // e.g., iy = 0, 1
      const T y = roi_start_h + ph * bin_size_h +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h);  // e.g., 0.5, 1.5
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_start_w + pw * bin_size_w +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);

        T val = bilinear_interpolate(
            offset_bottom_data, height, width, y, x, index);
        output_val += val;
      }
    }
    output_val /= count;

    top_data[index] = output_val;
  }
}


template <typename T>
__device__ void bilinear_interpolate_gradient(
    const int height,
    const int width,
    T y,
    T x,
    T* w1,
    T* w2,
    T* w3,
    T* w4,
    int* x_low,
    int* x_high,
    int* y_low,
    int* y_high,
    const int /*index*/ /* index for debug only*/) {
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    *w1 = *w2 = *w3 = *w4 = 0.;
    *x_low = *x_high = *y_low = *y_high = -1;
    return;
  }

  if (y <= 0) {
    y = 0;
  }
  if (x <= 0) {
    x = 0;
  }

  *y_low = static_cast<int>(y);
  *x_low = static_cast<int>(x);

  if (*y_low >= height - 1) {
    *y_high = *y_low = height - 1;
    y = (T)*y_low;
  } else {
    *y_high = *y_low + 1;
  }

  if (*x_low >= width - 1) {
    *x_high = *x_low = width - 1;
    x = (T)*x_low;
  } else {
    *x_high = *x_low + 1;
  }

  T ly = y - *y_low;
  T lx = x - *x_low;
  T hy = 1. - ly, hx = 1. - lx;

  // reference in forward
  *w1 = hy * hx, *w2 = hy * lx, *w3 = ly * hx, *w4 = ly * lx;

  return;
}

template <typename T>
inline __device__ T gpu_atomic_add(const T val, T* address);

template <>
inline __device__ float gpu_atomic_add(const float val, float* address) {
  return atomicAdd(address, val);
}

template <>
inline __device__ double gpu_atomic_add(const double val, double* address) {
  unsigned long long int* address_as_ull = (unsigned long long int*)address;
  unsigned long long int old = *address_as_ull;
  unsigned long long int assumed;

  do {
    assumed = old;
    old = atomicCAS(address_as_ull, assumed,
                    __double_as_longlong(val +
                    __longlong_as_double(assumed)));

    // Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
  } while (assumed != old);
  return val;
}

template <typename T>
__global__ void RoIAlignBackwardKernel(
    const int nthreads,
    const T* top_diff,
    const int num_rois,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const int sampling_ratio,
    T* bottom_diff,
    const T* bottom_rois) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_bottom_rois = bottom_rois + n * 5;
    int roi_batch_ind = offset_bottom_rois[0];

    // Do not using rounding; this implementation detail is critical
    T roi_start_w = offset_bottom_rois[1] * spatial_scale;
    T roi_start_h = offset_bottom_rois[2] * spatial_scale;
    T roi_end_w = offset_bottom_rois[3] * spatial_scale;
    T roi_end_h = offset_bottom_rois[4] * spatial_scale;

    // Force malformed ROIs to be 1x1
    T roi_width = max(roi_end_w - roi_start_w, (T)1.);
    T roi_height = max(roi_end_h - roi_start_h, (T)1.);
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    T* offset_bottom_diff =
        bottom_diff + (roi_batch_ind * channels + c) * height * width;

    int top_offset = (n * channels + c) * pooled_height * pooled_width;
    const T* offset_top_diff = top_diff + top_offset;
    const T top_diff_this_bin = offset_top_diff[ph * pooled_width + pw];

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height);  // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
    const T count = roi_bin_grid_h * roi_bin_grid_w;  // e.g. = 4

    for (int iy = 0; iy < roi_bin_grid_h; iy++) {  // e.g., iy = 0, 1
      const T y = roi_start_h + ph * bin_size_h +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h);  // e.g., 0.5, 1.5
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_start_w + pw * bin_size_w +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);

        T w1, w2, w3, w4;
        int x_low, x_high, y_low, y_high;

        bilinear_interpolate_gradient(
            height,
            width,
            y,
            x,
            &w1,
            &w2,
            &w3,
            &w4,
            &x_low,
            &x_high,
            &y_low,
            &y_high,
            index);

        T g1 = top_diff_this_bin * w1 / count;
        T g2 = top_diff_this_bin * w2 / count;
        T g3 = top_diff_this_bin * w3 / count;
        T g4 = top_diff_this_bin * w4 / count;

        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
          /*
          atomicAdd(
              offset_bottom_diff + y_low * width + x_low, static_cast<T>(g1));
          atomicAdd(
              offset_bottom_diff + y_low * width + x_high, static_cast<T>(g2));
          atomicAdd(
              offset_bottom_diff + y_high * width + x_low, static_cast<T>(g3));
          atomicAdd(
              offset_bottom_diff + y_high * width + x_high, static_cast<T>(g4));
          */
          gpu_atomic_add(
              static_cast<T>(g1), offset_bottom_diff + y_low * width + x_low);
          gpu_atomic_add(
              static_cast<T>(g2), offset_bottom_diff + y_low * width + x_high);
          gpu_atomic_add(
              static_cast<T>(g3), offset_bottom_diff + y_high * width + x_low);
          gpu_atomic_add(
              static_cast<T>(g4), offset_bottom_diff + y_high * width + x_high);
        }  // if
      }  // ix
    }  // iy
  }  // CUDA_1D_KERNEL_LOOP
}  // RoIAlignBackward
} // namespace


Hang Zhang's avatar
Hang Zhang committed
351
at::Tensor ROIAlign_Forward_CUDA(
Hang Zhang's avatar
Hang Zhang committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
    const at::Tensor input,
    const at::Tensor rois,
    int64_t pooled_height,
    int64_t pooled_width,
    double spatial_scale,
    int64_t sampling_ratio) {

  AT_ASSERT(input.is_contiguous());
  AT_ASSERT(rois.is_contiguous());
  AT_ASSERT(input.ndimension() == 4);
  AT_ASSERT(rois.ndimension() == 2);
  AT_ASSERT(rois.size(1) == 5);

  auto proposals = rois.size(0);
  auto channels = input.size(1);
  auto height = input.size(2);
  auto width = input.size(3);

  // Output Tensor is (num_rois, C, pooled_height, pooled_width)
371
  auto output = torch::zeros({proposals, channels, pooled_height, pooled_width}, input.options());
Hang Zhang's avatar
Hang Zhang committed
372
373
374

  auto count = output.numel();
  
Hang Zhang's avatar
Hang Zhang committed
375
  AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "ROIAlign_Forward_CUDA", ([&] {
Hang Zhang's avatar
Hang Zhang committed
376
377
378
379
    RoIAlignForwardKernel<scalar_t>
      <<<ROI_GET_BLOCKS(count),
         ROI_CUDA_NUM_THREADS,
         0,
Hang Zhang's avatar
Hang Zhang committed
380
         at::cuda::getCurrentCUDAStream()>>>(
Hang Zhang's avatar
Hang Zhang committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
          count,
          input.data<scalar_t>(),
          static_cast<scalar_t>(spatial_scale),
          channels,
          height,
          width,
          pooled_height,
          pooled_width,
          sampling_ratio,
          rois.data<scalar_t>(),
          output.data<scalar_t>());
  }));
  AT_ASSERT(cudaGetLastError() == cudaSuccess);
  return output;
}

Hang Zhang's avatar
Hang Zhang committed
397
at::Tensor ROIAlign_Backward_CUDA(
Hang Zhang's avatar
Hang Zhang committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
    const at::Tensor rois,
    const at::Tensor grad_output,
    int64_t b_size,
    int64_t channels,
    int64_t height,
    int64_t width,
    int64_t pooled_height,
    int64_t pooled_width,
    double spatial_scale,
    int64_t sampling_ratio) {

  AT_ASSERT(rois.is_contiguous());
  AT_ASSERT(rois.ndimension() == 2);
  AT_ASSERT(rois.size(1) == 5);

  auto roi_cols = rois.size(1);
  AT_ASSERT(roi_cols == 4 || roi_cols == 5);

  // Output Tensor is (num_rois, C, pooled_height, pooled_width)
  // gradient wrt input features
418
  auto grad_in = torch::zeros({b_size, channels, height, width}, rois.options());
Hang Zhang's avatar
Hang Zhang committed
419
420
421
  auto num_rois = rois.size(0);
  auto count = grad_output.numel();

Hang Zhang's avatar
Hang Zhang committed
422
  AT_DISPATCH_FLOATING_TYPES(rois.scalar_type(), "ROIAlign_Backward_CUDA", ([&] {
Hang Zhang's avatar
Hang Zhang committed
423
424
425
426
    RoIAlignBackwardKernel<scalar_t>
      <<<ROI_GET_BLOCKS(count),
         ROI_CUDA_NUM_THREADS,
         0,
Hang Zhang's avatar
Hang Zhang committed
427
         at::cuda::getCurrentCUDAStream()>>>(
Hang Zhang's avatar
Hang Zhang committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
          count,
          grad_output.data<scalar_t>(),
          num_rois,
          static_cast<scalar_t>(spatial_scale),
          channels,
          height,
          width,
          pooled_height,
          pooled_width,
          sampling_ratio,
          grad_in.data<scalar_t>(),
          rois.data<scalar_t>());
  }));

  AT_ASSERT(cudaGetLastError() == cudaSuccess);
  return grad_in;
}