rectify_cpu.cpp 8.02 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#include <ATen/ATen.h>
#include <ATen/Parallel.h>
#include <ATen/NativeFunctions.h>
#include <ATen/Parallel.h>
#include <tuple>

#include <torch/extension.h>
#include <ATen/div_rtn.h>
#include <ATen/TensorUtils.h>
#include <ATen/AccumulateType.h>

template <typename dest_t, typename src_t>
static inline dest_t safe_downcast(src_t v)
{
  TORCH_CHECK(std::numeric_limits<dest_t>::min() <= v && v <= std::numeric_limits<dest_t>::max(),
              "integer out of range");

  return static_cast<dest_t>(v);
}


template<typename T>
static inline T pooling_output_shape_pad_lr(
        T inputSize, T kernelSize, T pad_l, T pad_r, T stride, T dilation,
        bool ceil_mode) {
    T outputSize = div_rtn<T>(
        inputSize + pad_l + pad_r - dilation * (kernelSize - 1) - 1 +
        (ceil_mode ? stride - 1 : 0), stride) + 1;
    if (pad_l) {
        // ensure that the last pooling starts inside the image
        // needed to avoid problems in ceil mode
        if ((outputSize - 1) * stride >= inputSize + pad_l)
          --outputSize;
    }
    return outputSize;
}

template<typename T>
static inline T pooling_output_shape(
      T inputSize, T kernelSize, T pad, T stride, T dilation, bool ceil_mode) {
    return pooling_output_shape_pad_lr(
        inputSize, kernelSize, pad, pad, stride, dilation, ceil_mode);
}

static inline void pool2d_shape_check(
  const at::Tensor& input,
  int kH, int kW, int dH, int dW, int padH, int padW, int dilationH, int dilationW,
  int64_t nInputPlane,
  int64_t inputHeight, int64_t inputWidth,
  int64_t outputHeight, int64_t outputWidth)
{
  const int64_t ndim = input.ndimension();
  const int64_t nOutputPlane = nInputPlane;

  TORCH_CHECK(kW > 0 && kH > 0,
              "kernel size should be greater than zero, but got ",
              "kH: ", kH, " kW: ", kW);
  TORCH_CHECK(dW > 0 && dH > 0,
              "stride should be greater than zero, but got "
              "dH: ", dH, " dW: ", dW);
  TORCH_CHECK(dilationH > 0 && dilationW > 0,
              "dilation should be greater than zero, but got ",
              "dilationH: ", dilationH, " dilationW: ", dilationW);

  TORCH_CHECK(input.numel() > 0 && (ndim == 3 || ndim == 4),
              "non-empty 3D or 4D input tensor expected but got ndim: ", ndim);
  //TORCH_CHECK(kW/2 >= padW && kH/2 >= padH,
  //            "pad should be smaller than half of kernel size, but got ",
  //            "padW = ", padW, ", padH = ", padH, ", kW = ", kW, ", kH = ", kH);

  TORCH_CHECK(outputWidth >= 1 && outputHeight >= 1,
              "Given input size: (",
              nInputPlane, "x", inputHeight, "x", inputWidth, "). ",
              "Calculated output size: (",
              nOutputPlane, "x", outputHeight, "x", outputWidth, "). ",
              "Output size is too small");
}


template <typename scalar_t>
static void conv_rectify_cpu_frame(
          scalar_t *output_data,
          int64_t nbatch,
          int64_t nInputPlane,
          int64_t inputWidth,
          int64_t inputHeight,
          int64_t outputWidth,
          int64_t outputHeight,
          int kW,
          int kH,
          int dW,
          int dH,
          int padW,
          int padH,
          const int dilation_h,
          const int dilation_w,
          bool average_mode) {
  //at::parallel_for(0, nInputPlane, 0, [&](int64_t start, int64_t end) {
  for (int64_t k = 0; k < nInputPlane; k++) {
    int64_t p;
    for(p = 0; p < nbatch; p++)
    {
      int64_t xx, yy;
      /* For all output pixels... */
      scalar_t *ptr_output = output_data + p*nInputPlane*outputWidth*outputHeight + k*outputWidth*outputHeight;
      //int64_t i;

      for(yy = 0; yy < outputHeight; yy++)
      {
        for(xx = 0; xx < outputWidth; xx++)
        {
          /* Compute the mean of the input image... */
          int64_t hstart = yy * dH - padH;
          int64_t wstart = xx * dW - padW;
          int64_t hend = std::min(hstart + kH, inputHeight + padH);
          int64_t wend = std::min(wstart + kW, inputWidth + padW);
          //int pool_size = (hend - hstart) * (wend - wstart);
          int pool_size = ((kH - 1) / dilation_h + 1) * ((kW - 1) / dilation_w + 1);
          hstart = std::max(hstart, (int64_t) 0);
          wstart = std::max(wstart, (int64_t) 0);
          hend = std::min(hend, inputHeight);
          wend = std::min(wend, inputWidth);
          int hcount = int(((hend - hstart) - 1) / dilation_h + 1);
          int wcount = int(((wend - wstart) - 1) / dilation_w + 1);

          scalar_t mul_factor;
          if (average_mode) {
            mul_factor = scalar_t(1.0) / (hcount * wcount);
          }
          else {
            mul_factor = scalar_t(1.0) * pool_size / (hcount * wcount);
          }
          *ptr_output++ *= mul_factor;
        }
      }
    }
  }
  //});
}

void conv_rectify_cpu_tempalte(
          at::Tensor &output,
          const at::Tensor &input_,
          at::IntArrayRef kernel_size,
          at::IntArrayRef stride, 
          at::IntArrayRef padding,
          at::IntArrayRef dilation,
          bool average_mode)
{
  // #20866, #22032: Guarantee this for the official C++ API?
  TORCH_CHECK(kernel_size.size() == 1 || kernel_size.size() == 2,
    "conv_rectify: kernel_size must either be a single int, or a tuple of two ints");
  const int kH = safe_downcast<int, int64_t>(kernel_size[0]);
  const int kW = kernel_size.size() == 1 ? kH : safe_downcast<int, int64_t>(kernel_size[1]);

  TORCH_CHECK(stride.empty() || stride.size() == 1 || stride.size() == 2,
    "conv_rectify: stride must either be omitted, a single int, or a tuple of two ints");
  const int dH = stride.empty() ? kH : safe_downcast<int, int64_t>(stride[0]);
  const int dW = stride.empty() ? kW :
                 stride.size() == 1 ? dH : safe_downcast<int, int64_t>(stride[1]);

  TORCH_CHECK(padding.size() == 1 || padding.size() == 2,
    "conv_rectify: padding must either be a single int, or a tuple of two ints");
  const int padH = safe_downcast<int, int64_t>(padding[0]);
  const int padW = padding.size() == 1 ? padH : safe_downcast<int, int64_t>(padding[1]);

  TORCH_CHECK(dilation.size() == 1 || dilation.size() == 2,
    "rectify: dilation must either be a single int, or a tuple of two ints");
  const int dilationH = safe_downcast<int, int64_t>(dilation[0]);
  const int dilationW = dilation.size() == 1 ? dilationH : safe_downcast<int, int64_t>(dilation[1]);

  TORCH_CHECK((input_.ndimension() == 3 || input_.ndimension() == 4),
    "non-empty 2D or 3D (batch mode) tensor expected for input");

  /* sizes */
  const int64_t nbatch = input_.ndimension() == 4 ? input_.size(-4) : 1;
  const int64_t nInputPlane = input_.size(-3);
  const int64_t inputHeight = input_.size(-2);
  const int64_t inputWidth = input_.size(-1);

  //const int64_t outputHeight = pooling_output_shape<int64_t>(inputHeight, kH, padH, dH, dilationH, false);
  //const int64_t outputWidth = pooling_output_shape<int64_t>(inputWidth, kW, padW, dW, dilationW, false);
  const int64_t outputHeight = output.size(-2);
  const int64_t outputWidth = output.size(-1);

  pool2d_shape_check(
    input_,
    kH, kW, dH, dW, padH, padW, dilationH, dilationW,
    nInputPlane,
    inputHeight, inputWidth,
    outputHeight, outputWidth);

  TORCH_CHECK(output.is_contiguous(), "conv_rectify: output must be contiguous");

  at::Tensor input = input_.contiguous();

Hang Zhang's avatar
Hang Zhang committed
197
  AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "conv_rectify_cuda_frame", ([&] {
Hang Zhang's avatar
Hang Zhang committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
      scalar_t *output_data = output.data_ptr<scalar_t>();
      conv_rectify_cpu_frame<scalar_t>(
        output_data,
        nbatch,
        nInputPlane,
        inputWidth, inputHeight,
        outputWidth, outputHeight,
        kW, kH,
        dW, dH,
        padW, padH,
        dilationH,
        dilationW,
        average_mode);
    }
  ));
}

void CONV_RECTIFY_CPU(
  at::Tensor& output,
  const at::Tensor& input,
  at::IntArrayRef kernel_size,
  at::IntArrayRef stride,
  at::IntArrayRef padding,
  at::IntArrayRef dilation,
  bool average) {
  //at::Tensor output = at::empty({0}, input.options());
  conv_rectify_cpu_tempalte(
    output,
    input,
    kernel_size,
    stride,
    padding,
    dilation,
    average);
}