"torchvision/vscode:/vscode.git/clone" did not exist on "97885cb1c983525dd14b82f38760221cd4ea7a17"
mynn.py 7.29 KB
Newer Older
Zhang's avatar
v0.2.0  
Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import encoding

def conv3x3(in_planes, out_planes, stride=1):
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)

##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
class Basicblock(nn.Module):
    """ Pre-activation residual block
    Identity Mapping in Deep Residual Networks
    ref https://arxiv.org/abs/1603.05027
    """
    def __init__(self, inplanes, planes, stride=1, 
                            norm_layer=nn.BatchNorm2d):
        super(Basicblock, self).__init__()
        if inplanes != planes or stride !=1 :
            self.downsample = True
            self.residual_layer = nn.Conv2d(inplanes, planes,
                                            kernel_size=1, stride=stride)
        else:
            self.downsample = False
        conv_block=[]
        conv_block+=[norm_layer(inplanes),
                     nn.ReLU(inplace=True),
                     conv3x3(inplanes, planes,stride=stride),
                     norm_layer(planes),
                     nn.ReLU(inplace=True),
                     conv3x3(planes, planes)]
        self.conv_block = nn.Sequential(*conv_block)
    
    def forward(self, input):
        if self.downsample:
            residual = self.residual_layer(input)
        else:
            residual = input
        return residual + self.conv_block(input)


class Bottleneck(nn.Module):
    """ Pre-activation residual block
    Identity Mapping in Deep Residual Networks
    ref https://arxiv.org/abs/1603.05027
    """
    def __init__(self, inplanes, planes, stride=1,norm_layer=nn.BatchNorm2d):
        super(Bottleneck, self).__init__()
        self.expansion = 4
        if inplanes != planes*self.expansion or stride !=1 :
            self.downsample = True
            self.residual_layer = nn.Conv2d(inplanes, 
                planes * self.expansion, kernel_size=1, stride=stride)
        else:
            self.downsample = False
        conv_block = []
        conv_block += [norm_layer(inplanes),
                       nn.ReLU(inplace=True),
Hang Zhang's avatar
Hang Zhang committed
69
                       nn.Conv2d(inplanes, planes, kernel_size=1,
Zhang's avatar
v0.2.0  
Zhang committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
                                 stride=1, bias=False)]
        conv_block += [norm_layer(planes),
                       nn.ReLU(inplace=True),
                       nn.Conv2d(planes, planes, kernel_size=3, 
                                 stride=stride, padding=1, bias=False)]
        conv_block += [norm_layer(planes),
                       nn.ReLU(inplace=True),
                       nn.Conv2d(planes, planes * self.expansion, 
                                 kernel_size=1, stride=1, bias=False)]
        self.conv_block = nn.Sequential(*conv_block)
        
    def forward(self, x):
        if self.downsample:
            residual = self.residual_layer(x)
        else:
            residual = x
        return residual + self.conv_block(x)
        
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
class EncLayer(nn.Module):
    def __init__(self, channel, K=16, reduction=4):
        super(EncLayer, self).__init__()
        out_channel = int(channel / reduction)
        self.fc = nn.Sequential(
            nn.Conv2d(channel, out_channel, 1),
            nn.BatchNorm2d(out_channel),
            nn.ReLU(inplace=True),
            encoding.nn.Encoding(D=out_channel,K=K),
            encoding.nn.View(-1, out_channel*K),
            encoding.nn.Normalize(),
            nn.Linear(out_channel*K, channel),
            nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.fc(x).view(b, c, 1, 1)
        return x * y


class EncDropLayer(nn.Module):
    def __init__(self, channel, K=16, reduction=4):
        super(EncDropLayer, self).__init__()
        out_channel = int(channel / reduction)
        self.fc = nn.Sequential(
            nn.Conv2d(channel, out_channel, 1),
            nn.BatchNorm2d(out_channel),
            nn.ReLU(inplace=True),
            encoding.nn.EncodingDrop(D=out_channel,K=K),
            encoding.nn.View(-1, out_channel*K),
            encoding.nn.Normalize(),
            nn.Linear(out_channel*K, channel),
            nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.fc(x).view(b, c, 1, 1)
        return x * y


class EncBasicBlock(nn.Module):
    expansion = 1
    def __init__(self, inplanes, planes, stride=1, K=16, ELayer=EncLayer):
        super(EncBasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes, 1)
        self.bn2 = nn.BatchNorm2d(planes)
        self.se = ELayer(planes, K, self.expansion*4)
        self.stride = stride
        if inplanes != planes or stride !=1 :
            self.downsample = True
            self.residual_layer = nn.Conv2d(inplanes, planes,
                                            kernel_size=1, stride=stride)
        else:
            self.downsample = False

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.se(out)

        if self.downsample:
            residual = self.residual_layer(x)

        out += residual
        out = self.relu(out)

        return out


class EncBottleneck(nn.Module):
    expansion = 4
    def __init__(self, inplanes, planes, stride=1, downsample=None, K=16, ELayer=EncLayer):
        super(EncBottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, 
                               stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * self.expansion, 
            kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.se = ELayer(planes * self.expansion, K, self.expansion*4)
        self.stride = stride
        if inplanes != planes * self.expansion or stride !=1 :
            self.downsample = True
            self.residual_layer = nn.Conv2d(inplanes, 
                planes* self.expansion, kernel_size=1, stride=stride)
        else:
            self.downsample = False

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)
        out = self.se(out)

        if self.downsample:
            residual = self.residual_layer(x)
        out += residual
        out = self.relu(out)

        return out