gcn2.py 4.01 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from typing import Optional

import torch
from torch import Tensor
import torch.nn.functional as F
from torch.nn import ModuleList, Linear, BatchNorm1d
from torch_sparse import SparseTensor
from torch_geometric.nn import GCN2Conv

from scaling_gnns.models.base2 import ScalableGNN


class GCN2(ScalableGNN):
    def __init__(self, num_nodes: int, in_channels, hidden_channels: int,
                 out_channels: int, num_layers: int, alpha: float,
                 theta: float, shared_weights: bool = True,
                 dropout: float = 0.0, drop_input: bool = True,
                 batch_norm: bool = False, residual: bool = False,
                 pool_size: Optional[int] = None,
                 buffer_size: Optional[int] = None, device=None):
        super(GCN2, self).__init__(num_nodes, hidden_channels, num_layers,
                                   pool_size, buffer_size, device)

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.dropout = dropout
        self.drop_input = drop_input
        self.batch_norm = batch_norm
        self.residual = residual

        self.lins = ModuleList()
        self.lins.append(Linear(in_channels, hidden_channels))
        self.lins.append(Linear(hidden_channels, out_channels))

        self.convs = ModuleList()
        for i in range(num_layers):
            conv = GCN2Conv(hidden_channels, alpha=alpha, theta=theta,
                            layer=i + 1, shared_weights=shared_weights,
                            normalize=False)
            self.convs.append(conv)

        self.bns = ModuleList()
        for i in range(num_layers):
            bn = BatchNorm1d(hidden_channels)
            self.bns.append(bn)

    @property
    def reg_modules(self):
        return ModuleList(list(self.convs) + list(self.bns))

    @property
    def nonreg_modules(self):
        return self.lins

    def reset_parameters(self):
        super(GCN2, self).reset_parameters()
        for lin in self.lins:
            lin.reset_parameters()
        for conv in self.convs:
            conv.reset_parameters()
        for bn in self.bns:
            bn.reset_parameters()

    def forward(self, x: Tensor, adj_t: SparseTensor,
                batch_size: Optional[int] = None,
                n_id: Optional[Tensor] = None, offset: Optional[Tensor] = None,
                count: Optional[Tensor] = None) -> Tensor:

        if self.drop_input:
            x = F.dropout(x, p=self.dropout, training=self.training)

        x = x_0 = self.lins[0](x).relu_()
        x = F.dropout(x, p=self.dropout, training=self.training)

        for conv, bn, hist in zip(self.convs[:-1], self.bns[:-1],
                                  self.histories):
            h = conv(x, x_0, adj_t)
            if self.batch_norm:
                h = bn(h)
            if self.residual:
                h += x[:h.size(0)]
            x = h.relu_()
            x = self.push_and_pull(hist, x, batch_size, n_id, offset, count)
            x = F.dropout(x, p=self.dropout, training=self.training)

        h = self.convs[-1](x, x_0, adj_t)
        if self.batch_norm:
            h = self.bns[-1](h)
        if self.residual:
            h += x[:h.size(0)]
        x = h.relu_()
        x = F.dropout(x, p=self.dropout, training=self.training)
        x = self.lins[1](x)
        return x

    @torch.no_grad()
    def forward_layer(self, layer, x, adj_t, state):
        if layer == 0:
            if self.drop_input:
                x = F.dropout(x, p=self.dropout, training=self.training)

            x = x_0 = self.lins[0](x).relu_()
            state['x_0'] = x_0[:adj_t.size(0)]

        x = F.dropout(x, p=self.dropout, training=self.training)
        h = self.convs[layer](x, state['x_0'], adj_t)
        if self.batch_norm:
            h = self.bns[layer](h)
        if self.residual and h.size(-1) == x.size(-1):
            h += x[:h.size(0)]
        x = h.relu_()

        if layer == self.num_layers - 1:
            x = F.dropout(x, p=self.dropout, training=self.training)
            x = self.lins[1](x)

        return x