Commit 789daf57 authored by Kevin Keraudren's avatar Kevin Keraudren
Browse files

adding Python example for dense inference adapted from the original C++...

adding Python example for dense inference adapted from the original C++ example (http://www.philkr.net/home/densecrf)
parent 5c05e2db
#!/usr/bin/python
import numpy as np
import cv2
import densecrf as dcrf
from skimage.segmentation import relabel_sequential
import sys
# Usage:
# python dense_inference.py image annotations output
img = cv2.imread(sys.argv[1], 1)
labels = relabel_sequential(cv2.imread(sys.argv[2], 0))[0].flatten()
output = sys.argv[3]
M = labels.max() + 1 # number of labels
# Setup the CRF model
d = dcrf.DenseCRF2D(img.shape[0], img.shape[1], M)
# Certainty that the ground truth is correct
GT_PROB = 0.5
# Simple classifier that is 50% certain that the annotation is correct
u_energy = -np.log(1.0 / M)
n_energy = -np.log((1.0 - GT_PROB) / (M - 1))
p_energy = -np.log(GT_PROB)
U = np.zeros((M, img.shape[0] * img.shape[1]), dtype='float32')
U[:, labels > 0] = n_energy
U[labels, np.arange(U.shape[1])] = p_energy
U[:, labels == 0] = u_energy
d.setUnaryEnergy(U)
d.addPairwiseGaussian(sxy=3, compat=3)
d.addPairwiseBilateral(sxy=80, srgb=13, rgbim=img, compat=10)
# Do the inference
res = np.argmax(d.inference(5), axis=0).astype('float32')
res *= 255 / res.max()
res = res.reshape(img.shape[:2])
cv2.imwrite(output, res.astype('uint8'))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment