README.md 4.01 KB
Newer Older
lucasb-eyer's avatar
lucasb-eyer committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
PyDenseCRF
==========

This is a (Cython-based) Python wrapper for Philipp Krähenbühl's Fully-Connected CRFs (version 2).

If you use this code for your reasearch, please cite:

```
Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials
Philipp Krähenbühl and Vladlen Koltun
NIPS 2011
```

and provide a link to this repository as a footnote or a citation.

Installation
============

You can install this using `pip` by executing:

```
TODO
```

Usage
=====

For images, the easiest way to use this library is using the `DenseCRF2D` class:

```
import numpy as np
import densecrf as dcrf

d = dcrf.DenseCRF2D(640, 480, 3)  # width, height, nlabels
```

Unary potential
---------------

You can then set a fixed unary potential in the following way:

```
U = np.array(...)     # Get the unary in some way.
print(U.shape)        # -> (640, 480, 3)
print(U.dtype)        # -> dtype('float32')
U = U.reshape((-1,3)) # Needs to be flat.
d.setUnaryEnergy(U)

# Or alternatively: d.setUnary(ConstUnary(U))
```

Remember that `U` should be negative log-probabilities, so if you're using
probabilities `py`, don't forget to `U = -np.log(py)` them.

Requiring the `reshape` on the unary is an API wart that I'd like to fix, but
don't know how to without introducing an explicit dependency on numpy.

Pairwise potentials
-------------------

The two-dimensional case has two utility methods for adding the most-common pairwise potentials:

```
# This adds the color-independent term, features are the locations only.
d.addPairwiseGaussian(sxy=(3,3), compat=3, kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC)

# This adds the color-dependent term, i.e. features are (x,y,r,g,b).
# im is an image-array, e.g. im.dtype == np.uint8 and im.shape == (640,480,3)
d.addPairwiseBilateral(sxy=(80,80), srgb=(13,13,13), rgbim=im, compat=10, kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC)
```

Both of these methods have shortcuts and default-arguments such that the most
common use-case can be simplified to:

```
d.addPairwiseGaussian(sxy=3, compat=3)
d.addPairwiseBilateral(sxy=80, srgb=13, rgbim=im, compat=10)
```

### Compatibilities

The `compatibility` argument can be any of the following:

- A number, then a `PottsCompatibility` is being used.
- A 1D array, then a `DiagonalCompatibility` is being used.
- A 2D array, then a `MatrixCompatibility` is being used.

### Kernels

Possible values for the `kernel` argument are:

- `CONST_KERNEL`
- `DIAG_KERNEL` (the default)
- `FULL_KERNEL`

### Normalizations

Possible values for the `normalization` argument are:

- `NO_NORMALIZATION`
- `NORMALIZE_BEFORE`
- `NORMALIZE_AFTER`
- `NORMALIZE_SYMMETRIC` (the default)

Inference
---------

The easiest way to do inference is to simply call:

```
Q = d.inference(n_iterations=5)
```

And the MAP prediction is then:

```
map = np.argmax(Q, axis=0).reshape((640,480))
```

Step-by-step inference
----------------------

If for some reason you want to run the inference loop manually, you can do so:

```
Q, tmp1, tmp2 = d.startInference()
for i in range(5):
    print("KL-divergence at {}: {}".format(i, d.klDivergence(Q)))
    d.stepInference(Q, tmp1, tmp2)
```

Generic non-2D
--------------

The `DenseCRF` class can be used for generic (non-2D) dense CRFs.
Its usage is exactly the same as above, except that the 2D-specific pairwise
potentials `addPairwiseGaussian` and `addPairwiseBilateral` are missing.

Instead, you need to use the generic `addPairwiseEnergy` method like this:

```
d = dcrf.DenseCRF(100, 3)  # npoints, nlabels

feats = np.array(...)  # Get the pairwise features from somewhere.
print(feats.shape)     # -> (100, 3)
print(feats.dtype)     # -> dtype('float32')

dcrf.addPairwiseEnergy(feats)
```

In addition, you can pass `compatibility`, `kernel` and `normalization`
arguments just like in the 2D gaussian and bilateral cases.

The potential will be computed as `w*exp(-0.5 * |f_i - f_j|^2)`.

Learning
--------

The learning has not been fully wrapped. If you need it, get in touch or better
yet, wrap it and submit a pull-request!