pretrain_mcore_mistral.py 6.34 KB
Newer Older
hepj's avatar
hepj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright (c) 2023 Alibaba PAI and Nvidia Megatron-LM Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import torch
from torch import Tensor
from functools import partial
from typing import Union

from megatron.training import get_args, get_timers
from megatron.core import mpu, tensor_parallel
from megatron.core.enums import ModelType
from megatron.training.utils import (
    get_batch_on_this_tp_rank,
    get_batch_on_this_cp_rank,
    average_losses_across_data_parallel_group
)
from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder
from megatron.training import pretrain
from megatron.core.datasets.gpt_dataset import GPTDatasetConfig
from megatron.core.datasets.gpt_dataset import GPTDataset
from megatron.training.arguments import core_transformer_config_from_args

from megatron_patch.data import build_pretrain_dataset_from_original
from megatron_patch.data.utils import get_batch_on_this_tp_rank_original
from megatron_patch.tokenizer import get_tokenizer, build_tokenizer
from megatron_patch.arguments import get_patch_args
from megatron_patch.model.mixtral.model import GPTModel
from megatron_patch.model.mixtral.layer_specs import get_gpt_layer_with_transformer_engine_spec


def model_provider(
    pre_process=True, post_process=True
) -> Union[GPTModel]:

    args = get_args()
    build_tokenizer(args)
    config = core_transformer_config_from_args(get_args())
    transformer_layer_spec = get_gpt_layer_with_transformer_engine_spec(args.num_experts, args.moe_grouped_gemm)
    model = GPTModel(
        config=config,
        transformer_layer_spec=transformer_layer_spec,
        vocab_size=args.padded_vocab_size,
        max_sequence_length=args.max_position_embeddings,
        pre_process=pre_process,
        post_process=post_process,
        fp16_lm_cross_entropy=args.fp16_lm_cross_entropy,
        parallel_output=True,
        share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights,
        position_embedding_type=args.position_embedding_type,
        rotary_percent=args.rotary_percent
    )

    return model

def get_batch(data_iterator):
    """Generate a batch."""

    # TODO: this is pretty hacky, find a better way
    if (not mpu.is_pipeline_first_stage()) and (not mpu.is_pipeline_last_stage()):
        return None, None, None, None, None

    args = get_args()

    if "-Raw" in args.dataset:
        # get batches based on the TP rank you are on
        batch = get_batch_on_this_tp_rank_original(data_iterator)
        # slice batch along sequence dimension for context parallelism
        batch = get_batch_on_this_cp_rank(batch)

    elif "-Idxmap" in args.dataset:
        # get batches based on the TP rank you are on
        batch = get_batch_on_this_tp_rank(data_iterator)
        # slice batch along sequence dimension for context parallelism
        batch = get_batch_on_this_cp_rank(batch)

    else:
        raise ValueError("please set correct --dataset ")

    return batch.values()

def loss_func(loss_mask: Tensor, output_tensor: Tensor):
    """Loss function.

    Args:
        loss_mask (Tensor): Used to mask out some portions of the loss
        output_tensor (Tensor): The tensor with the losses
    """
    args = get_args()

    losses = output_tensor.float()
    loss_mask = loss_mask.view(-1).float()
    if args.context_parallel_size > 1:
        loss = torch.cat([torch.sum(losses.view(-1) * loss_mask).view(1), loss_mask.sum().view(1)])
        torch.distributed.all_reduce(loss, group=mpu.get_context_parallel_group())
        loss = loss[0] / loss[1]
    else:
        loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()

    # Check individual rank losses are not NaN prior to DP all-reduce.
    if args.check_for_nan_in_loss_and_grad:
        global_rank = torch.distributed.get_rank()
        assert not loss.isnan(), (
            f'Rank {global_rank}: found NaN in local forward loss calculation. '
            f'Device: {torch.cuda.current_device()}, node: {os.uname()[1]}'
        )

    # Reduce loss for logging.
    averaged_loss = average_losses_across_data_parallel_group([loss])

    return loss * args.context_parallel_size, {'lm loss': averaged_loss[0]}


def forward_step(data_iterator, model):
    """Forward step."""
    timers = get_timers()

    # Get the batch.
    timers('batch-generator', log_level=2).start()
    tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
        data_iterator)
    timers('batch-generator').stop()

    output_tensor = model(tokens, position_ids, attention_mask,
                          labels=labels)

    return output_tensor, partial(loss_func, loss_mask)


def is_dataset_built_on_rank():
    return (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()) and mpu.get_tensor_model_parallel_rank() == 0

def core_gpt_dataset_config_from_args(args):
    return GPTDatasetConfig(
        is_built_on_rank=is_dataset_built_on_rank,
        random_seed=args.seed,
        sequence_length=args.seq_length,
        blend=args.data_path,
        split=args.split,
        path_to_cache=args.data_cache_path,
    )

def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid, and test datasets."""
    args = get_args()
    if "-Raw" in args.dataset:
                train_ds, valid_ds, test_ds = \
                                    build_pretrain_dataset_from_original(args.dataset)
    else:
        train_ds, valid_ds, test_ds = BlendedMegatronDatasetBuilder(
            GPTDataset,
            train_val_test_num_samples,
            core_gpt_dataset_config_from_args(args)
        ).build()

    return train_ds, valid_ds, test_ds


if __name__ == "__main__":

    train_valid_test_datasets_provider.is_distributed = True
    pretrain(train_valid_test_datasets_provider, model_provider,
             ModelType.encoder_or_decoder,
             forward_step,
             extra_args_provider=get_patch_args)