dataset_helpers.py 17.5 KB
Newer Older
hepj's avatar
hepj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
import dataclasses
import itertools
import json
import random
import re
import sys
import traceback
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

from image_processing import get_visual_transform
import numpy as np
import torch
from torchvision import transforms as T

from megatron.energon import (
    Batch,
    CaptioningSample,
    DefaultTaskEncoder,
    OCRSample,
    SimilarityInterleavedSample,
    VQASample,
)
from megatron.energon.transforms import CustomTransform, MergeTransform
from megatron.training import get_args, get_tokenizer


class RandomResize(CustomTransform):
    """Resizes the image by a random scale factor in the given interval, but at most max_size"""

    def __init__(self, min_scale: float, max_scale: float, max_size: int):
        self._min_scale = min_scale
        self._max_scale = max_scale
        self._max_size = max_size

    def apply_transform(self, matrix: np.ndarray, dst_size: np.ndarray) -> Tuple[Any, Any, Any]:
        scale = random.uniform(self._min_scale, self._max_scale)
        new_size = tuple(int(x * scale) for x in dst_size)

        if max(new_size) > self._max_size:
            scale = self._max_size / max(new_size)
            new_size = tuple(int(x * scale) for x in dst_size)

        matrix = self.scale(scale, scale) @ matrix
        dst_size = np.array(new_size, dtype=dst_size.dtype)

        return matrix, dst_size, (self.__class__.__name__, scale)


class RandomResizeLongEdge(CustomTransform):
    """Resizes the image's longer edge to a random length between min_size and max_size pixels."""

    def __init__(self, min_size: int, max_size: int):
        self._min_size = min_size
        self._max_size = max_size

    def apply_transform(self, matrix: np.ndarray, dst_size: np.ndarray) -> Tuple[Any, Any, Any]:
        new_long = random.randint(self._min_size, self._max_size)
        if dst_size[0] > dst_size[1]:  # h > w
            new_w, new_h = int(new_long * dst_size[1] / dst_size[0]), new_long
        else:  # w > h
            new_w, new_h = new_long, int(new_long * dst_size[0] / dst_size[1])

        new_size = (new_h, new_w)
        matrix = self.scale(new_w / dst_size[1], new_h / dst_size[0]) @ matrix
        dst_size = np.array(new_size, dtype=dst_size.dtype)

        return matrix, dst_size, (self.__class__.__name__, new_size)


class RandomPad(CustomTransform):
    """Pads the image to the given size, randomly choosing the position of the image within the new larger image.
    If the image is already larger than the given size, it will not be padded in that direction(s)."""

    def __init__(self, size: Tuple[int, int]):
        self._new_size = size  # h, w

    def apply_transform(self, matrix: np.ndarray, dst_size: np.ndarray) -> Tuple[Any, Any, Any]:
        h_pad = max(self._new_size[0] - dst_size[0], 0)
        w_pad = max(self._new_size[1] - dst_size[1], 0)

        if h_pad == 0 and w_pad == 0:
            return matrix, dst_size, (self.__class__.__name__, None)
        else:
            # TODO: fix me
            # top = random.randint(0, h_pad)
            # left = random.randint(0, w_pad)
            top = 0
            left = 0

            matrix = self.translate(left, top) @ matrix
            dst_size = np.array(self._new_size, dtype=dst_size.dtype)
            return matrix, dst_size, (self.__class__.__name__, (top, left))


def _get_ocr_document_visual_transform(IMG_H=1024, IMG_W=1024):
    document_visual_transform = T.Compose(
        [
            MergeTransform(
                [
                    # T.RandomResizedCrop(size=FINAL_SIZE, scale=(0.5, 1.0), ratio=(0.8, 1.2)),
                    RandomResizeLongEdge(960, 1008),  # Note: 1008 comes from list(range(960, 1024, 16))[-1]
                    T.RandomRotation(5, interpolation=T.InterpolationMode.BILINEAR),
                    T.RandomPerspective(distortion_scale=0.1, p=0.1),
                    RandomPad((IMG_H, IMG_W)),
                ]
            ),
            T.ColorJitter(brightness=(0.8, 1.2), contrast=(0.7, 1.0)),
            T.RandomGrayscale(p=0.5),
            T.RandomInvert(p=0.5),
            T.RandomAdjustSharpness(sharpness_factor=0.0, p=0.5),
            T.RandomAdjustSharpness(sharpness_factor=2.0, p=0.5),
            # LogImage(),
            # T.ToTensor(),
            # T.Normalize(IMAGE_MEAN, IMAGE_STD),
        ]
    )
    return document_visual_transform

def _get_ocr_document_identity_transform(IMG_H=1024, IMG_W=1024):
    long_edge = max(IMG_H, IMG_W)
    document_identity_transform = T.Compose(
        [
            MergeTransform(
                [
                    RandomResizeLongEdge(long_edge, long_edge),
                    RandomPad((long_edge, long_edge)),
                ]
            )
        ]
    )
    return document_identity_transform

def _get_ocr_paragraph_visual_transform(IMG_H=1024, IMG_W=1024):
    paragraph_visual_transform = T.Compose(
        [
            MergeTransform(
                [
                    # T.RandomResizedCrop(size=FINAL_SIZE, scale=(0.5, 1.0), ratio=(0.8, 1.2)),
                    RandomResize(0.5, 2.0, min(IMG_H, IMG_W)), #FINAL_SIZE),
                    T.RandomRotation(1, interpolation=T.InterpolationMode.BILINEAR),
                    T.RandomPerspective(distortion_scale=0.1, p=0.1),
                    RandomPad((IMG_H, IMG_W)),
                ]
            ),
            T.ColorJitter(brightness=(0.8, 1.2), contrast=(0.7, 1.0)),
            T.RandomGrayscale(p=0.5),
            T.RandomInvert(p=0.5),
            # T.RandomAdjustSharpness(sharpness_factor=0.0, p=0.5),
            # T.RandomAdjustSharpness(sharpness_factor=2.0, p=0.5),
            # LogImage(),
            # T.ToTensor(),
            # T.Normalize(IMAGE_MEAN, IMAGE_STD),
        ]
    )
    return paragraph_visual_transform

# Type for intermediate batch, after batch()
@dataclass
class ImageTaskSample:
    __key__: str
    __subflavors__: Dict
    # (c, h, w)
    imgs: List[torch.Tensor]
    num_tiles: List[int]
    text: np.ndarray
    target: torch.Tensor = None


# Typing for the resulting batch data after encode_batch()
@dataclass
class ImageTaskBatch(Batch):
    __keys__: List[str]
    __subflavors__: List[Dict]
    # (num_tiles, c, h, w)
    imgs: torch.Tensor
    num_tiles: List[int]
    # (n, seq_len)
    text: torch.Tensor
    # (n, seq_len)
    target: torch.Tensor


class TaskEncoder(DefaultTaskEncoder[OCRSample, OCRSample, ImageTaskBatch, dict]):
    """A simple task encoder for captioning."""

    def __init__(
        self
    ):
        # Specify the batch_type for default batching (batching is performed here "manually" by
        # overwriting the `batch` method)
        super().__init__()

        self.args = get_args()

        self.tokenizer = get_tokenizer()
        #self.manual_prompts = json.load(open(self.args.prompt_path))
        self.manual_prompts = {
            "CaptioningPretraining": {
                "raw": [
                    "Generate a short caption of the image.",
                    "Describe the image concisely.",
                    "Provide a brief description of the given image."
                ],
                "llava": [
                    "Give a brief description of image.",
                    "Give a brief description of the image.",
                    "Provide a brief description of the given image.",
                    "Provide a one-sentence caption for the provided image.",
                    "Write a terse but informative summary of the picture.",
                    "Describe the image concisely.",
                    "Generate a clear and concise summary of the photo."
                ]
            }
        }
        self.seq_len = self.args.dataloader_seq_length

        self.txt_to_token_dict = {}

        self.img_h, self.img_w = self.args.img_h, self.args.img_w


    def encode_sample(self, sample: Union[CaptioningSample, OCRSample, VQASample, SimilarityInterleavedSample]):
        if isinstance(sample, CaptioningSample):
            yield self.encode_captioning(sample)
        elif isinstance(sample, VQASample):
            is_llava_training = sample.__subflavors__['is_llava_training'] if 'is_llava_training' in sample.__subflavors__ else False

            if "llava" in sample.__key__ or is_llava_training:
                yield self.encode_llava_pretrain(sample)
            else:
                yield self.encode_vqa(sample)
        elif isinstance(sample, SimilarityInterleavedSample):
            if "llava" or "video" in sample.__key__:
                yield self.encode_llava_sft(sample)
            else:
                raise NotImplementedError('Sample format not supported')
        else:
            raise NotImplementedError('Sample format not supported')

    def encode_captioning(self, sample: CaptioningSample):
        augment = sample.__subflavors__.get("augmentation")

        imgs = get_visual_transform(
            sample.image, self.img_h, self.img_w, self.args.use_tiling, self.args.max_num_tiles, self.args.use_thumbnail, augment,
        )
        num_tiles = [len(imgs)]

        prompt_list = self.manual_prompts["CaptioningPretraining"]["llava"]

        prompt_idx = np.random.randint(len(prompt_list))
        cur_prompt = prompt_list[prompt_idx]
        cur_prompt = "<image>\n" + cur_prompt + "\n"

        caption = sample.caption.strip()

        split_by_line_flag = sample.__subflavors__.get("SplitByLine")
        if split_by_line_flag:
            caption_list = caption.split('\n')
            caption = np.random.choice(caption_list)

        conv = [
            # Note: no system message.
            {"role": "user", "content": cur_prompt},
            {"role": "assistant", "content": caption},
        ]

        input_ids, target = self.tokenizer.tokenize_conversation(conv, True, False)

        return ImageTaskSample(
            __key__=sample.__key__,
            __subflavors__=sample.__subflavors__,
            imgs=imgs,
            num_tiles=num_tiles,
            text=input_ids,
            target=target,
        )

    def encode_llava_pretrain(self, sample: VQASample):
        augment = sample.__subflavors__.get("augmentation", False)

        imgs = get_visual_transform(
            sample.image, self.img_h, self.img_w, self.args.use_tiling, self.args.max_num_tiles, self.args.use_thumbnail, augment,
        )
        num_tiles = [len(imgs)]

        # LLAVA training: override text-prompt with just the image.
        conv = [
            # Note: no system message.
            {"role": "user", "content": "<image>\n"},
            {"role": "assistant", "content": sample.answers},
        ]

        input_ids, target = self.tokenizer.tokenize_conversation(conv, True, False)

        return ImageTaskSample(
            __key__=sample.__key__,
            __subflavors__=sample.__subflavors__,
            imgs=imgs,
            num_tiles=num_tiles,
            text=input_ids,
            target=target,
        )

    def encode_llava_sft(self, sample: SimilarityInterleavedSample):
        augment = sample.__subflavors__['augmentation'] if 'augmentation' in sample.__subflavors__ else False
        has_image = sample.__subflavors__['has_image'] if 'has_image' in sample.__subflavors__ else False
        has_video = sample.__subflavors__['has_video'] if 'has_video' in sample.__subflavors__ else False

        if has_image:
            imgs = get_visual_transform(
                sample.images[0], self.img_h, self.img_w, self.args.use_tiling, self.args.max_num_tiles, self.args.use_thumbnail, augment,
            )
            num_tiles = [len(imgs)]
        elif has_video:
            # Grab the selected frames of the video as a tensor with shape
            # fhwc: (num_frames, height, width, num_channels).
            video_fhwc = sample.images[0].permute(0, 2, 3, 1)
            selected_frames = torch.linspace(
                0, video_fhwc.shape[0] - 1, self.args.num_frames).long()
            video_frame_fhwc = video_fhwc[selected_frames]
            imgs = []
            for video_frame_hwc in video_frame_fhwc:
                imgs += get_visual_transform(
                    video_frame_hwc, self.img_h, self.img_w,
                    self.args.use_tiling, self.args.max_num_tiles,
                    self.args.use_thumbnail, augment=False)
            num_tiles = [len(imgs)]
        else:
            imgs = num_tiles = []
            sample.__key__ = "{}-{}".format("no-image", sample.__key__)

        conversation = []
        # Note: Some tokenizers may ignore the system prompt.
        conversation.append({"role": "system", "content": "Answer the questions."})

        for text in sample.texts:
            if text["from"] == "human":
                role = "user"
            elif text["from"] == "gpt":
                role = "assistant"
            else:
                raise RuntimeError(f"unexpected role {text['from']} in {sample.texts}")

            turn = {"role": role, "content": text["value"]}
            conversation.append(turn)

        input_ids, target = self.tokenizer.tokenize_conversation(conversation, True, False)

        return ImageTaskSample(
            __key__=sample.__key__,
            __subflavors__=sample.__subflavors__,
            imgs=imgs,
            num_tiles=num_tiles,
            text=input_ids,
            target=target,
        )

    def encode_vqa(self, sample: VQASample):
        augment = sample.__subflavors__['augmentation'] if 'augmentation' in sample.__subflavors__ else False
        has_video = sample.__subflavors__['has_video'] if 'has_video' in sample.__subflavors__ else False

        if has_video:
            # Grab the selected frames of the video as a tensor with shape
            # fhwc: (num_frames, height, width, num_channels).
            video_fhwc = sample.image.permute(0, 2, 3, 1)
            selected_frames = torch.linspace(
                0, video_fhwc.shape[0] - 1, self.args.num_frames).long()
            video_frame_fhwc = video_fhwc[selected_frames]
            imgs = []
            for video_frame_hwc in video_frame_fhwc:
                imgs += get_visual_transform(
                    video_frame_hwc, self.img_h, self.img_w,
                    self.args.use_tiling, self.args.max_num_tiles,
                    self.args.use_thumbnail, augment=False)
        else:
            imgs = get_visual_transform(
                sample.image, self.img_h, self.img_w, self.args.use_tiling, self.args.max_num_tiles, self.args.use_thumbnail, augment,
            )
        num_tiles = [len(imgs)]

        if "<image>" not in sample.context:
            sample.context = "<image>" + sample.context

        if isinstance(sample.answers, list):
            answer_list = sample.answers
            weight_list = np.array(sample.answer_weights).astype(np.float32)
            weight_list = weight_list / np.sum(weight_list)
            answer_idx = np.random.choice(weight_list.shape[0], 1, p=weight_list)[0]
            answer = answer_list[answer_idx]
        else:
            answer = sample.answers

        conversation = [
            {"role": "user", "content": sample.context},
            {"role": "assistant", "content": answer},
        ]

        input_ids, target = self.tokenizer.tokenize_conversation(conversation, True, False)

        return ImageTaskSample(
            __key__=sample.__key__,
            __subflavors__=sample.__subflavors__,
            imgs=imgs,
            num_tiles=num_tiles,
            text=input_ids,
            target=target,
        )

    def batch(self, samples: List[ImageTaskSample]) -> ImageTaskBatch:
        # Stack images to [num_tiles, c, h, w]. If there are no images (text-only), then use a dummy image.
        imgs = [img for s in samples for img in s.imgs]
        if len(imgs) > 0:
            imgs = torch.stack(imgs)
        else:
            imgs = torch.tensor([[0]], dtype=torch.float32)

        # Put tile counts to a single tensor. If there are no images (text-only), then use a dummy tensor.
        num_tiles = torch.tensor([n for s in samples for n in s.num_tiles], dtype=torch.int)
        if len(num_tiles) == 0:
            num_tiles = torch.tensor([[0]], dtype=torch.int)

        # If the user hasn't defined a target sequence length, then use the max along the sample lengths.
        max_seq_len = self.seq_len
        if not max_seq_len:
            max_seq_len = max(len(s.text) for s in samples)

        text_mat = np.full((len(samples), max_seq_len), self.tokenizer.pad, dtype=np.int64)
        # +1 to accommodate shift to left by one later.
        target_mat = np.full((len(samples), max_seq_len + 1), self.tokenizer.pad, dtype=np.int64)

        for i, s in enumerate(samples):
            # If the sample/target length exceeds the target sequence length, then truncate.
            text_len = min(max_seq_len, len(s.text))
            target_len = min(max_seq_len+1, len(s.target))

            text_mat[i, :text_len] = np.array(s.text)[:text_len]
            target_mat[i, :target_len] = np.array(s.target)[:target_len]

        batch = ImageTaskBatch(
            __keys__=[s.__key__ for s in samples],
            __subflavors__=[s.__subflavors__ for s in samples],
            imgs=imgs,
            num_tiles=num_tiles,
            text=torch.from_numpy(text_mat),
            target=torch.from_numpy(target_mat),
        )

        return batch

    def encode_batch(self, batch: ImageTaskBatch) -> dict:
        raw = dataclasses.asdict(batch)
        del raw["__subflavors__"]
        return raw


def print_error_handler(exc: Exception, key: Optional[str]):
    print(
        f"The following exception occurred in the dataloader for sample {key} and is skipped",
        file=sys.stderr,
    )
    traceback.print_exc()