run_pretrain_llama_70b.sh 7.76 KB
Newer Older
hepj's avatar
hepj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#!/bin/bash
set -e

CURRENT_DIR="$( cd "$( dirname "$0" )" && pwd )"
MEGATRON_PATH=$( dirname $( dirname ${CURRENT_DIR}))
export PYTHONPATH=$PYTHONPATH:${MEGATRON_PATH}:${MEGATRON_PATH}/PAI-Megatron-LM-240718
export CUDA_DEVICE_MAX_CONNECTIONS=1

ENV=$1
if [ $ENV = dsw ]; then
export CUDA_VISIBLE_DEVICES=7
MASTER_ADDR=localhost
MASTER_PORT=$(shuf -n 1 -i 10000-65535)
NNODES=1
NODE_RANK=0
GPUS_PER_NODE=1

elif [ $ENV = dlc ]; then

NNODES=${WORLD_SIZE}
NODE_RANK=${RANK}
GPUS_PER_NODE=${KUBERNETES_CONTAINER_RESOURCE_GPU}

fi

DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT"

MODEL_SIZE=$2
BATCH_SIZE=$3
GLOBAL_BATCH_SIZE=$4
LR=$5
MIN_LR=$6
SEQ_LEN=$7
PAD_LEN=$8
PR=$9
TP=${10}
PP=${11}
EP=${12}
AC=${13}
DO=${14}
FL=${15}
SP=${16}
TE=${17}
SAVE_INTERVAL=${18}
DATASET_PATH=${19}
PRETRAIN_CHECKPOINT_PATH=${20}
TRAIN_TOKENS=${21}
WARMUP_TOKENS=${22}
OUTPUT_BASEPATH=${23}

if [ $MODEL_SIZE = 0.5B ]; then

HIDDEN_SIZE=896
INTERMEDIATE_SIZE=4864
MAX_POSITION_EMBEDDINGS=131072
MAX_WINDOW_LAYERS=24
NUM_ATTENTION_HEADS=14
NUM_HIDDEN_LAYERS=24
NUM_KEY_VALUE_HEADS=2
RMS_NORM_EPS=1e-6
ROPE_THETA=1000000
SLIDING_WINDOW=131072
EXTRA_VOCAB_SIZE=34

moe_options=" \
            "

elif [ $MODEL_SIZE = 1.5B ]; then

HIDDEN_SIZE=1536
INTERMEDIATE_SIZE=8960
MAX_POSITION_EMBEDDINGS=131072
MAX_WINDOW_LAYERS=28
NUM_ATTENTION_HEADS=12
NUM_HIDDEN_LAYERS=28
NUM_KEY_VALUE_HEADS=2
RMS_NORM_EPS=1e-6
ROPE_THETA=1000000
SLIDING_WINDOW=131072
EXTRA_VOCAB_SIZE=293

moe_options=" \
            "

elif [ $MODEL_SIZE = 7B ]; then

HIDDEN_SIZE=3584
INTERMEDIATE_SIZE=18944
MAX_POSITION_EMBEDDINGS=131072
MAX_WINDOW_LAYERS=28
NUM_ATTENTION_HEADS=28
NUM_HIDDEN_LAYERS=28
NUM_KEY_VALUE_HEADS=4
RMS_NORM_EPS=1e-6
ROPE_THETA=1000000
SLIDING_WINDOW=131072
EXTRA_VOCAB_SIZE=421

moe_options=" \
            "

elif [ $MODEL_SIZE = 70B ]; then

HIDDEN_SIZE=8192
INTERMEDIATE_SIZE=28672
MAX_POSITION_EMBEDDINGS=4096
MAX_WINDOW_LAYERS=80
NUM_ATTENTION_HEADS=64
NUM_HIDDEN_LAYERS=80
NUM_KEY_VALUE_HEADS=8
RMS_NORM_EPS=1e-5
ROPE_THETA=1000000
SLIDING_WINDOW=131072
EXTRA_VOCAB_SIZE=0

moe_options=" \
            "

elif [ $MODEL_SIZE = 72B ]; then

HIDDEN_SIZE=8192
INTERMEDIATE_SIZE=29568
MAX_POSITION_EMBEDDINGS=131072
MAX_WINDOW_LAYERS=80
NUM_ATTENTION_HEADS=64
NUM_HIDDEN_LAYERS=80
NUM_KEY_VALUE_HEADS=8
RMS_NORM_EPS=1e-5
ROPE_THETA=1000000
SLIDING_WINDOW=131072
EXTRA_VOCAB_SIZE=421

moe_options=" \
            "

elif [ $MODEL_SIZE = A14B ]; then

HIDDEN_SIZE=3584
INTERMEDIATE_SIZE=18944
MAX_POSITION_EMBEDDINGS=131072
MAX_WINDOW_LAYERS=28
MOE_INTERMEDIATE_SIZE=2560
NUM_ATTENTION_HEADS=28
NUM_EXPERTS=64
NUM_EXPERTS_PER_TOPK=8
NUM_HIDDEN_LAYERS=28
NUM_KEY_VALUE_HEADS=4
RMS_NORM_EPS=1e-6
ROPE_THETA=1000000
SHARED_EXPERT_INTERMEDIATE_SIZE=20480
SLIDING_WINDOW=131072
EXTRA_VOCAB_SIZE=293

moe_options=" \
            --moe-router-topk ${NUM_EXPERTS_PER_TOPK} \
            --num-experts ${NUM_EXPERTS} \
            --expert-model-parallel-size ${EP}\
            --moe-ffn-hidden-size ${MOE_INTERMEDIATE_SIZE} \
            --shared-moe-ffn-hidden-size ${SHARED_EXPERT_INTERMEDIATE_SIZE} \
            --enable-shared-expert"

fi

if [ $AC = full ]; then
    activation_checkpoint_options=" \
		    --recompute-method uniform \
		    --recompute-num-layers 1 \
		    --recompute-granularity full"
elif [ $AC = sel ]; then
    activation_checkpoint_options=" \
        --recompute-activations"
elif [ $AC = none ]; then
    activation_checkpoint_options=" \
    "
fi

if [ $PR = fp16 ]; then
    pr_options=" \
		    --fp16 \
        --apply-query-key-layer-scaling"
    export NVTE_APPLY_QK_LAYER_SCALING=1
elif [ $PR = bf16 ]; then
    pr_options=" \
        --bf16"
elif [ $PR = fp8 ]; then
    pr_options=" \
        --bf16 \
        --fp8-hybrid \
        --fp8-amax-compute-algo max \
        --fp8-amax-history-len 1024 \
        --transformer-impl transformer_engine"
fi

if [ $DO = true ]; then
    do_options=" \
		    --use-distributed-optimizer"

elif [ $DO = false ]; then
    do_options=" \
                    "
fi

if [ $FL = true ]; then
    flash_options=" \
		    --use-flash-attn"

elif [ $FL = false ]; then
    flash_options=" \
                    "
fi

if [ $TE = true ]; then
    te_options=" \
		    --transformer-impl transformer_engine"

elif [ $TE = false ]; then
    te_options=" \
        --transformer-impl local"
fi


if [ $SP = true ] && [ $TP -gt 1 ]; then
    sp_options=" \
		    --sequence-parallel"

elif [ $SP = false ]; then
    sp_options=" \
                    "
fi

if [ $PRETRAIN_CHECKPOINT_PATH != none ]; then
    load_options=" \
            --load $PRETRAIN_CHECKPOINT_PATH"
fi

TRAIN_ITERS=$(( ${TRAIN_TOKENS} / ${GLOBAL_BATCH_SIZE} / ${SEQ_LEN} ))
LR_WARMUP_ITERS=$(( ${WARMUP_TOKENS}  / ${GLOBAL_BATCH_SIZE} / ${SEQ_LEN} ))
LR_DECAY_ITERS=$(( ${TRAIN_TOKENS} /  ${GLOBAL_BATCH_SIZE} / ${SEQ_LEN} ))

NAME="pretrain-mcore-llama3-${MODEL_SIZE}-lr-${LR}-minlr-${MIN_LR}-bs-${BATCH_SIZE}-gbs-${GLOBAL_BATCH_SIZE}-seqlen-${SEQ_LEN}-pr-${PR}-tp-${TP}-pp-${PP}-ac-${AC}-do-${DO}-sp-${SP}-tt-${TRAIN_TOKENS}-wt-${WARMUP_TOKENS}"
mkdir -p "${OUTPUT_BASEPATH}/tensorboard/"
mkdir -p "${OUTPUT_BASEPATH}/checkpoint/"
mkdir -p "${OUTPUT_BASEPATH}/log/"
current_time=$(date "+%Y.%m.%d-%H.%M.%S")
TENSORBOARD_DIR="${OUTPUT_BASEPATH}/tensorboard/${NAME}_${current_time}"
mkdir -p ${TENSORBOARD_DIR}

SAVED_PRETRAIN_CHECKPOINT_PATH="${OUTPUT_BASEPATH}/checkpoint/${NAME}"

megatron_options="  \
        --save ${SAVED_PRETRAIN_CHECKPOINT_PATH} \
        --data-path ${DATASET_PATH} \
        --split 99,1,0 \
        --lr ${LR} \
        --min-lr ${MIN_LR} \
        --lr-decay-style cosine \
        --weight-decay 0.1 \
        --adam-beta1 0.9 \
        --adam-beta2 0.95 \
        --clip-grad 0.0 \
        --init-method-std 0.008 \
        --attention-dropout 0.0 \
        --hidden-dropout 0.0 \
        --lr-decay-iters ${LR_DECAY_ITERS} \
        --lr-warmup-iters ${LR_WARMUP_ITERS} \
        --train-iters ${TRAIN_ITERS} \
        --micro-batch-size ${BATCH_SIZE} \
        --global-batch-size ${GLOBAL_BATCH_SIZE} \
        --num-layers ${NUM_HIDDEN_LAYERS} \
        --hidden-size ${HIDDEN_SIZE} \
        --num-attention-heads ${NUM_ATTENTION_HEADS} \
        --ffn-hidden-size ${INTERMEDIATE_SIZE} \
        --seq-length ${SEQ_LEN} \
        --max-position-embeddings ${MAX_POSITION_EMBEDDINGS} \
        --max-padding-length ${PAD_LEN} \
        --log-interval 1 \
        --eval-interval 10000 \
        --eval-iters 10 \
        --save-interval ${SAVE_INTERVAL} \
        --tensorboard-queue-size 1 \
        --tensorboard-dir ${TENSORBOARD_DIR} \
        --log-timers-to-tensorboard \
        --log-batch-size-to-tensorboard \
        --log-validation-ppl-to-tensorboard \
        --tensor-model-parallel-size ${TP} \
        --pipeline-model-parallel-size ${PP} \
        --no-load-optim \
        --no-load-rng \
        --num-workers 8 \
        --extra-vocab-size ${EXTRA_VOCAB_SIZE} \
        --patch-tokenizer-type LLama3Tokenizer \
        --dataset LLama-Pretrain-Idxmap \
        --swiglu \
        --normalization RMSNorm \
        --norm-epsilon ${RMS_NORM_EPS} \
        --use-rotary-position-embeddings \
        --no-rope-fusion \
        --position-embedding-type rope \
        --untie-embeddings-and-output-weights \
        --no-log-loss-scale-to-tensorboard \
        --disable-bias-linear \
        --group-query-attention \
        --num-query-groups ${NUM_KEY_VALUE_HEADS} \
        --rotary-percent 1.0 \
        --rotary-base ${ROPE_THETA} \
        --rotary-seq-len-interpolation-factor 1 \
        --optimizer cpu-adam
        "

run_cmd="torchrun $DISTRIBUTED_ARGS pretrain_llama_mcore070.py
 ${megatron_options} ${pr_options} ${load_options} ${te_options} ${activation_checkpoint_options} ${do_options} ${flash_options} ${sp_options} ${moe_options}"

echo ${run_cmd}
eval ${run_cmd}
set +x