pretrain_llama.py 8.24 KB
Newer Older
hepj's avatar
hepj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.
"""Pretrain GPT."""

import os
import torch
from functools import partial
from typing import Union
from megatron.training import get_args
from megatron.training import print_rank_0
from megatron.training import get_timers
from megatron.core import mpu
from megatron.core.enums import ModelType
from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder
from megatron.core.datasets.gpt_dataset import GPTDatasetConfig
from megatron.core.datasets.gpt_dataset import MockGPTDataset, GPTDataset
import megatron.legacy.model
from megatron.training import pretrain
from megatron.core.transformer.spec_utils import import_module
from megatron.training.utils import (
    get_batch_on_this_cp_rank,
    get_batch_on_this_tp_rank,
    average_losses_across_data_parallel_group
)
from megatron.training.arguments import core_transformer_config_from_args

from megatron_patch.data.utils import get_batch_on_this_tp_rank_original
from megatron_patch.data import build_pretrain_dataset_from_original
from megatron_patch.model.llama3.layer_specs import get_gpt_layer_with_transformer_engine_spec
from megatron_patch.model.llama3.model import GPTModel
from megatron_patch.arguments import get_patch_args
from megatron_patch.tokenizer import get_tokenizer, build_tokenizer
import torch._dynamo
torch._dynamo.config.suppress_errors = True

def model_provider(pre_process=True, post_process=True) -> Union[GPTModel, megatron.legacy.model.GPTModel]:
    """Builds the model.

    If you set the use_mcore_models to True, it will return the mcore GPT model and if not the legacy GPT model.

    Args:
        pre_process (bool, optional): Set to true if you need to compute embedings. Defaults to True.
        post_process (bool, optional): Set to true if you need to want to compute output logits/loss. Defaults to True.


    Returns:
        Union[GPTModel, megatron.legacy.model.GPTModel]: The returned model
    """
    args = get_args()
    build_tokenizer(args)
    print_rank_0('building GPT model ...')
    # Experimental loading arguments from yaml
    config = core_transformer_config_from_args(args)
    if args.use_mcore_models:
        if args.spec is not None:
            transformer_layer_spec = import_module(args.spec)
        else:
            transformer_layer_spec = get_gpt_layer_with_transformer_engine_spec(args.num_experts, args.moe_grouped_gemm)

        model = GPTModel(
            config=config,
            transformer_layer_spec=transformer_layer_spec,
            vocab_size=args.padded_vocab_size,
            max_sequence_length=args.max_position_embeddings,
            pre_process=pre_process,
            post_process=post_process,
            fp16_lm_cross_entropy=args.fp16_lm_cross_entropy,
            parallel_output=True,
            share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights,
            position_embedding_type=args.position_embedding_type,
            rotary_percent=args.rotary_percent,
            rotary_base=args.rotary_base,
            seq_len_interpolation_factor=args.rotary_seq_len_interpolation_factor
        )
    else:
        assert(args.context_parallel_size == 1), "Context parallelism is only supported with Megatron Core!"
        from megatron_patch.model.llama3.gpt_model import GPTModel as GPTModelX
        model = GPTModelX(
            config,
            num_tokentypes=0,
            parallel_output=True,
            pre_process=pre_process,
            post_process=post_process
        )

    return model


def get_batch(data_iterator):
    """Generate a batch."""

    # TODO: this is pretty hacky, find a better way
    if (not mpu.is_pipeline_first_stage()) and (not mpu.is_pipeline_last_stage()):
        return None, None, None, None, None

    args = get_args()

    if "-Raw" in args.dataset:
        # get batches based on the TP rank you are on
        batch = get_batch_on_this_tp_rank_original(data_iterator)
        # slice batch along sequence dimension for context parallelism
        batch = get_batch_on_this_cp_rank(batch)

    elif "-Idxmap" in args.dataset:
        # get batches based on the TP rank you are on
        batch = get_batch_on_this_tp_rank(data_iterator)
        # slice batch along sequence dimension for context parallelism
        batch = get_batch_on_this_cp_rank(batch)

    else:
        raise ValueError("please set correct --dataset ")

    return batch.values()

def loss_func(loss_mask: torch.Tensor, output_tensor: torch.Tensor):
    """Loss function.

    Args:
        loss_mask (torch.Tensor): Used to mask out some portions of the loss
        output_tensor (torch.Tensor): The tensor with the losses
    """
    args = get_args()

    losses = output_tensor.float()
    loss_mask = loss_mask.view(-1).float()
    if args.context_parallel_size > 1:
        loss = torch.cat([torch.sum(losses.view(-1) * loss_mask).view(1), loss_mask.sum().view(1)])
        torch.distributed.all_reduce(loss, group=mpu.get_context_parallel_group())
        loss = loss[0] / loss[1]
    else:
        loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()

    # Check individual rank losses are not NaN prior to DP all-reduce.
    if args.check_for_nan_in_loss_and_grad:
        global_rank = torch.distributed.get_rank()
        assert not loss.isnan(), (
            f'Rank {global_rank}: found NaN in local forward loss calculation. '
            f'Device: {torch.cuda.current_device()}, node: {os.uname()[1]}'
        )

    # Reduce loss for logging.
    averaged_loss = average_losses_across_data_parallel_group([loss])

    return loss * args.context_parallel_size, {'lm loss': averaged_loss[0]}


def forward_step(data_iterator, model: GPTModel):
    """Forward training step.

    Args:
        data_iterator : Input data iterator
        model (GPTModel): The GPT Model
    """
    timers = get_timers()

    # Get the batch.
    timers('batch-generator', log_level=2).start()
    tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
        data_iterator)
    timers('batch-generator').stop()

    output_tensor = model(tokens, position_ids, attention_mask,
                          labels=labels)

    return output_tensor, partial(loss_func, loss_mask)


def is_dataset_built_on_rank():
    return (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()) and mpu.get_tensor_model_parallel_rank() == 0


def core_gpt_dataset_config_from_args(args):
    tokenizer = get_tokenizer()

    return GPTDatasetConfig(
        random_seed=args.seed,
        sequence_length=args.seq_length,
        blend=args.data_path,
        blend_per_split=[args.train_data_path, args.valid_data_path, args.test_data_path],
        split=args.split,
        path_to_cache=args.data_cache_path,
        mock=args.mock_data,
        mmap_bin_files=args.mmap_bin_files,
        tokenizer=tokenizer,
        reset_position_ids=args.reset_position_ids,
        reset_attention_mask=args.reset_attention_mask,
        eod_mask_loss=args.eod_mask_loss,
        create_attention_mask=args.create_attention_mask_in_dataloader,
    )


def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build the train test and validation datasets.

    Args:
        train_val_test_num_samples : A list containing the number of samples in train test and validation.
    """
    args = get_args()
    print_rank_0("> building train, validation, and test datasets for GPT ...")

    if "-Raw" in args.dataset:
        train_ds, valid_ds, test_ds = build_pretrain_dataset_from_original(args.dataset)
    else:
        config = core_gpt_dataset_config_from_args(args)

        if config.mock:
            dataset_type = MockGPTDataset
        else:
            dataset_type = GPTDataset
        train_ds, valid_ds, test_ds = BlendedMegatronDatasetBuilder(
            dataset_type,
            train_val_test_num_samples,
            is_dataset_built_on_rank,
            config
        ).build()

        print_rank_0("> finished creating GPT datasets ...")

    return train_ds, valid_ds, test_ds


if __name__ == "__main__":

    train_valid_test_datasets_provider.is_distributed = True

    pretrain(train_valid_test_datasets_provider,
             model_provider,
             ModelType.encoder_or_decoder,
             forward_step,
             extra_args_provider=get_patch_args)