README.md 12.7 KB
Newer Older
hepj's avatar
hepj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# Table of Contents
   * [安装](#安装)
   * [数据集&模型下载](#数据集和模型下载)
   * [Megatron-LM-Dense模型训练流程](#Megatron-LM-Dense模型训练流程)
      * [模型格式转换](#Megatron-LM-Dense模型格式转换)
      * [继续预训练](#Megatron-LM-Dense继续预训练)
      * [指令微调](#Megatron-LM-Dense指令微调)
   * [Megatron-Core-Dense模型训练流程](#Megatron-Core-Dense模型训练流程)
      * [模型格式转换](#Megatron-Core-Dense模型格式转换)
      * [继续预训练](#Megatron-Core-Dense继续预训练)
      * [指令微调](#Megatron-Core-Dense指令微调)
   * [下游任务评估](#下游任务评估)
      * [Megatron-LM模型格式转换](#Megatron-LM-Dense模型转成Huggingface格式)
      * [运行评估工具](#运行评估工具)

# 安装
推荐使用英伟达提供的官方镜像 nvcr.io/nvidia/pytorch:23.12-py3 来创建容器

```bash
git clone --recurse-submodules https://github.com/alibaba/Pai-Megatron-Patch.git
cd Pai-Megatron-Patch
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
```

# 数据集和模型下载
```bash
cd /mnt
mkdir llama2-ckpts
cd llama2-ckpts
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/llama2-ckpts/Llama-2-13b-hf.tgz
tar -zxf Llama-2-13b-hf.tgz

mkdir llama2-datasets
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/llama2-datasets/wudao_llamabpe_text_document.bin
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/llama2-datasets/wudao_llamabpe_text_document.idx

wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/llama2-datasets/alpaca_zh-llama2-train.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/llama2-datasets/alpaca_zh-llama2-valid.json
```

# Megatron-LM-Dense模型训练流程

运行hf2megatron_convertor.sh脚本,需要传入的参数列表如下
```
MEGATRON_PATH=$1                   # Megatron-LM的路径
SOURCE_CKPT_PATH=$2                # 原始CKPT的路径
TARGET_CKPT_PATH=$3                # 目标CKPT的路径
TP=$4                              # 模型并行度
PP=$5                              # 流水并行度
MN=$6                              # llama-7b, llama-13b, llama-30b, llama-65b, llama2-7b, llama2-13b, llama2-70b
EXTRA_VOCAB_SIZE=$7                # 词表扩充大小
mg2hf=$8                           # 是否执行mg2hf转换
```

运行run_pretrain_megatron_llama.sh脚本,需要传入的参数列表如下
```
ENV=$1                          # 运行环境: dlc, dsw
MEGATRON_PATCH_PATH=$2          # 设置Megatron Patch的代码路径
MODEL_SIZE=$3                   # 模型结构参数量级:7B, 13B
BATCH_SIZE=$4                   # 每卡训练一次迭代样本数: 4, 8
GLOBAL_BATCH_SIZE=$5            # 全局batch size
LR=$6                           # 学习率: 1e-5, 5e-5
MIN_LR=$7                       # 最小学习率: 1e-6, 5e-6
SEQ_LEN=$8                      # 序列长度
PAD_LEN=$9                      # Padding长度:100
EXTRA_VOCAB_SIZE=${10}          # 词表扩充大小
PR=${11}                        # 训练精度: fp16, bf16
TP=${12}                        # 模型并行度
PP=${13}                        # 流水并行度
AC=${14}                        # 激活检查点模式: sel, full
DO=${15}                        # 是否使用Megatron版Zero-1降显存优化器: true, false
FL=${16}                        # 是否使用Flash Attention: true, false
SP=${17}                        # 是否使用序列并行: true, false
TE=${18}                        # 是否使用Transformer Engine: true, false
SAVE_INTERVAL=${19}             # 保存ckpt的间隔
DATASET_PATH=${20}              # 训练数据集路径
PRETRAIN_CHECKPOINT_PATH=${21}  # 预训练模型路径
TRAIN_TOKENS=${22}              # 训练token数
WARMUP_TOKENS=${23}             # 预热token数
OUTPUT_BASEPATH=${24}           # 训练输出文件路径
```

运行run_finetune_megatron_llama_withGA.sh脚本,需要传入的参数列表如下
```
ENV=$1                          # 运行环境: dlc, dsw
MEGATRON_PATCH_PATH=$2          # 设置Megatron Patch的代码路径
MODEL_SIZE=$3                   # 模型结构参数量级:7B, 13B
BATCH_SIZE=$4                   # 每卡训练一次迭代样本数: 4, 8
GLOBAL_BATCH_SIZE=$5            # 全局batch size
LR=$6                           # 学习率: 1e-5, 5e-5
MIN_LR=$7                       # 最小学习率: 1e-6, 5e-6
SEQ_LEN=$8                      # 序列长度
PAD_LEN=$9                      # Padding长度:100
EXTRA_VOCAB_SIZE=${10}          # 词表扩充大小
PR=${11}                        # 训练精度: fp16, bf16
TP=${12}                        # 模型并行度
PP=${13}                        # 流水并行度
AC=${14}                        # 激活检查点模式: sel, full
DO=${15}                        # 是否使用Megatron版Zero-1降显存优化器: true, false
FL=${16}                        # 是否使用Flash Attention: true, false
SP=${17}                        # 是否使用序列并行: true, false
TE=${18}                        # 是否使用Transformer Engine: true, false
SAVE_INTERVAL=${19}             # 保存ckpt的间隔
DATASET_PATH=${20}              # 训练数据集路径
VALID_DATASET_PATH=${21}        # 验证数据集路径
PRETRAIN_CHECKPOINT_PATH=${22}  # 预训练模型路径
TRAIN_ITERS=${23}               # 训练steps数
WARMUP_ITERS=${24}              # 预热steps数
OUTPUT_BASEPATH=${25}           # 训练输出文件路径
```

## Megatron-LM-Dense模型格式转换
```bash
cd /workspace/Pai-Megatron-Patch/toolkits/model_checkpoints_convertor/llama
sh hf2megatron_convertor.sh \
../../../     \
/mnt/llama2-ckpts/Llama-2-13b-hf     \
/mnt/llama2-ckpts/Llama-2-13b-hf-to-megatron-tp8-pp1  \
8  \
1  \
llama2-13b \
0 \
false
```

## Megatron-LM-Dense继续预训练
```bash
cd /workspace/Pai-Megatron-Patch/examples/llama2
sh run_pretrain_megatron_llama.sh  \
dsw  \
../../ \
13B   \
1    \
8 \
1e-5   \
1e-6   \
128  \
128  \
0   \
bf16  \
8   \
1  \
sel  \
true   \
false  \
false   \
false   \
100000  \
/mnt/llama2-datasets/wudao_llamabpe_text_document   \
/mnt/llama2-ckpts/Llama-2-13b-hf-to-megatron-tp8-pp1   \
100000000   \
10000   \
/mnt/output_megatron_llama2
```

## Megatron-LM-Dense指令微调
```bash
cd /workspace/Pai-Megatron-Patch/examples/llama2
sh run_finetune_megatron_llama_withGA.sh  \
dsw  \
../../ \
13B     \
1      \
32     \
1e-5   \
1e-6   \
128   \
128     \
0      \
bf16   \
8      \
1      \
sel    \
true   \
false  \
false  \
false \
100 \
/mnt/llama2-datasets/alpaca_zh-llama2-train.json   \
/mnt/llama2-datasets/alpaca_zh-llama2-valid.json   \
/mnt/llama2-ckpts/Llama-2-13b-hf-to-megatron-tp8-pp1   \
1000 \
10 \
/mnt/output_megatron_llama2/
```

# Megatron-Core-Dense模型训练流程

运行hf2mcore_convertor.sh脚本,需要传入的参数列表如下
```
MODEL_SIZE=$1                  # 模型参数:7B/13B/70B
HG_CKPT_PATH=$2                # HF的CKPT的路径
MEGATRON_PATH=$3               # Megatron-LM的根目录
SOURCE_CKPT_PATH=$4            # 源路径
TARGET_CKPT_PATH=$5            # 目标路径
TP=$6                          # 模型并行度
PP=$7                          # 流水并行度
EXTRA_VOCAB_SIZE=$8            # 额外扩充词表大小
NUM_EXPERTS=$9                 # 专家数量
EXPERTS_TOPK=${10}             # 专家路由Topk
EP=${11}                       # 专家并行度
mg2hf=${12}                    # 是否执行mcore2hf转换
```

运行run_pretrain_mcore_llama.sh脚本,需要传入的参数列表如下
```
ENV=$1                          # 运行环境: dlc, dsw
MEGATRON_PATCH_PATH=$2          # 设置Megatron Patch的代码路径
MODEL_SIZE=$3                   # 模型结构参数量级:7B, 13B
BATCH_SIZE=$4                   # 每卡训练一次迭代样本数: 4, 8
GLOBAL_BATCH_SIZE=$5            # 全局batch size
LR=$6                           # 学习率: 1e-5, 5e-5
MIN_LR=$7                       # 最小学习率: 1e-6, 5e-6
SEQ_LEN=$8                      # 序列长度
PAD_LEN=$9                      # Padding长度:100
EXTRA_VOCAB_SIZE=${10}          # 词表扩充大小
PR=${11}                        # 训练精度: fp16, bf16
TP=${12}                        # 模型并行度
PP=${13}                        # 流水并行度
AC=${14}                        # 激活检查点模式: sel, full
DO=${15}                        # 是否使用Megatron版Zero-1降显存优化器: true, false
FL=${16}                        # 是否使用Flash Attention: true, false
SP=${17}                        # 是否使用序列并行: true, false
TE=${18}                        # 是否使用Transformer Engine: true, false
MOE=${19}                       # 是否打开MOE: true, false
SAVE_INTERVAL=${20}             # 保存ckpt的间隔
DATASET_PATH=${21}              # 训练数据集路径
PRETRAIN_CHECKPOINT_PATH=${22}  # 预训练模型路径
TRAIN_TOKENS=${23}              # 训练token数
WARMUP_TOKENS=${24}             # 预热token数
OUTPUT_BASEPATH=${25}           # 训练输出文件路径
```

运行run_finetune_mcore_llama_withGA.sh脚本,需要传入的参数列表如下
```
ENV=$1                          # 运行环境: dlc, dsw
MEGATRON_PATCH_PATH=$2          # 设置Megatron Patch的代码路径
MODEL_SIZE=$3                   # 模型结构参数量级:7B, 13B
BATCH_SIZE=$4                   # 每卡训练一次迭代样本数: 4, 8
GLOBAL_BATCH_SIZE=$5            # 全局batch size
LR=$6                           # 学习率: 1e-5, 5e-5
MIN_LR=$7                       # 最小学习率: 1e-6, 5e-6
SEQ_LEN=$8                      # 序列长度
PAD_LEN=$9                      # Padding长度:100
EXTRA_VOCAB_SIZE=${10}          # 词表扩充大小
PR=${11}                        # 训练精度: fp16, bf16
TP=${12}                        # 模型并行度
PP=${13}                        # 流水并行度
AC=${14}                        # 激活检查点模式: sel, full
DO=${15}                        # 是否使用Megatron版Zero-1降显存优化器: true, false
FL=${16}                        # 是否使用Flash Attention: true, false
SP=${17}                        # 是否使用序列并行: true, false
TE=${18}                        # 是否使用Transformer Engine: true, false
MOE=${19}                       # 是否打开MOE: true, false
SAVE_INTERVAL=${20}             # 保存ckpt的间隔
DATASET_PATH=${21}              # 训练数据集路径
VALID_DATASET_PATH=${22}        # 验证数据集路径
PRETRAIN_CHECKPOINT_PATH=${23}  # 预训练模型路径
TRAIN_ITERS=${24}               # 训练step数
WARMUP_ITERS=${25}              # 预热step数
OUTPUT_BASEPATH=${26}           # 训练输出文件路径
```

## Megatron-Core-Dense模型格式转换
```bash
cd /workspace/Pai-Megatron-Patch/toolkits/model_checkpoints_convertor/llama \
sh hf2mcore_convertor.sh \
7B \
/mnt/llama2-ckpts/Llama-2-13b-hf \
../../../     \
/mnt/llama2-ckpts/Llama-2-13b-hf \
/mnt/llama2-ckpts/Llama-2-13b-hf-to-mcore-tp8-pp1  \
8  \
1  \
0  \
0  \
0  \
0 \
false
```

## Megatron-Core-Dense继续预训练
```bash
cd /workspace/Pai-Megatron-Patch/examples/llama2
sh run_pretrain_mcore_llama.sh  \
dsw  \
../../ \
13B   \
1    \
8 \
1e-5   \
1e-6   \
128  \
128  \
0   \
bf16  \
8   \
1  \
sel  \
true   \
false  \
false   \
false   \
false \
100000  \
/mnt/llama2-datasets/wudao_llamabpe_text_document   \
/mnt/llama2-ckpts/Llama-2-13b-hf-to-mcore-tp8-pp1   \
100000000   \
10000   \
/mnt/output_mcore_llama2
```

## Megatron-Core-Dense指令微调
```bash
cd /workspace/Pai-Megatron-Patch/examples/llama2
sh run_finetune_mcore_llama_withGA.sh  \
dsw  \
../../ \
13B   \
1    \
8 \
1e-5   \
1e-6   \
128  \
128  \
0   \
bf16  \
8   \
1  \
sel  \
true   \
false  \
false   \
false   \
false \
100000  \
/mnt/llama2-datasets/alpaca_zh-llama2-train.json   \
/mnt/llama2-datasets/alpaca_zh-llama2-valid.json   \
/mnt/llama2-ckpts/Llama-2-13b-hf-to-mcore-tp8-pp1   \
100000000   \
10000   \
/mnt/output_mcore_llama2
```

# 下游任务评估

## Megatron-LM-Dense模型转成Huggingface格式
```bash
cd /workspace/Pai-Megatron-Patch/toolkits/model_checkpoints_convertor/llama
sh hf2megatron_convertor.sh \
../../../     \
/mnt/llama2-ckpts/Llama-2-13b-hf-to-mcore-tp8-pp1/release  \
/mnt/llama2-ckpts/Llama-2-13b-hf-megatron-to-hf    \
8  \
1  \
llama2-13b \
0 \
true
```

## 运行评估工具
```bash
cd /workspace/Pai-Megatron-Patch/LM-Evaluation-Harness-240310
accelerate launch --main_process_port 29051 -m lm_eval \
--model hf \
--model_args pretrained=/mnt/llama2-ckpts/Llama-2-13b-hf-megatron-to-hf,trust_remote_code=True \
--tasks mmlu,ceval-valid  \
--batch_size 16
```