ds_train_huggingface_finetune.py 18.9 KB
Newer Older
hepj's avatar
hepj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
#!/usr/bin/python
# -*- coding: utf-8 -*-

# Copyright (c) 2023 Alibaba PAI Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import copy
import torch
import logging
import datasets
import argparse
import transformers
from transformers import (
    LlamaModel,
    LlamaForCausalLM,
    LlamaConfig,
    TrainingArguments,
    default_data_collator,
    Trainer, AutoTokenizer, AutoModelForCausalLM
)
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb, LlamaDecoderLayer
from torch import nn
from datasets import load_dataset
from torch import cat, stack, arange, int32
from typing import Optional, Tuple
from einops import rearrange
from transformers.deepspeed import is_deepspeed_zero3_enabled, deepspeed_config
from transformers.utils import ContextManagers
from transformers.modeling_utils import no_init_weights
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
import deepspeed

logger = logging.getLogger(__name__)
os.environ["WANDB_DISABLED"] = "true"


def dummy_function(*args, **kwargs):
    return None


try:
    from flash_attn.bert_padding import unpad_input, pad_input

    support_flash_attn, fa_version = True, 2.0
except ImportError:
    logger.info("flash attention unavailable")
    unpad_input = dummy_function
    pad_input = dummy_function
    flash_attn_varlen_qkvpacked_func = dummy_function
    support_flash_attn = False
if support_flash_attn:
    try:
        from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func

        flash_attn_varlen_qkvpacked_func = flash_attn_unpadded_qkvpacked_func
        fa_version = 1.0
    except ImportError:
        try:
            import flash_attn
            from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func, flash_attn_varlen_func, \
                flash_attn_varlen_kvpacked_func

            flash_attn.flash_attn_interface.flash_attn_unpadded_func = flash_attn_varlen_func
            flash_attn.flash_attn_interface.flash_attn_unpadded_qkvpacked_func = flash_attn_varlen_qkvpacked_func
            flash_attn.flash_attn_interface.flash_attn_unpadded_kvpacked_func = flash_attn_varlen_kvpacked_func
            fa_version = 2.0
        except ImportError:
            flash_attn_varlen_qkvpacked_func = dummy_function


def get_patch_args(parser):
    group = parser.add_argument_group(title='llama2')
    group.add_argument('--local-rank', type=int, default=None, help='local rank passed from distributed launcher')
    group.add_argument('--micro-batch-size', type=int, default=None,
                       help='Batch size per model instance (local batch size). Global batch size is local batch size '
                            'times data parallel size times number of micro batches.')
    group.add_argument('--gradient-accumulation-steps', type=int, default=None)
    group.add_argument('--epochs', type=int, default=None, help='Number of finetunning epochs. '
                                                                'Zero results in evaluation only.')
    group.add_argument('--num-layers', type=int, default=None, help='Number of transformer layers.')
    group.add_argument('--hidden-size', type=int, default=None, help='Tansformer hidden size.')
    group.add_argument('--intermediate-size', type=int, default=None, help='--intermediate-size')
    group.add_argument('--num-attention-heads', type=int, default=None, help='Number of transformer attention heads.')
    group.add_argument('--seq-length', type=int, default=None, help='Maximum sequence length to process.')
    group.add_argument('--num-workers', type=int, default=None)
    group.add_argument('--logging-dir', type=str, default='megatron', help='transformer-type')
    group.add_argument('--train-data', default=None, help='Whitespace separated paths or corpora names for training.')
    group.add_argument('--valid-data', default=None, help='path(s) to the validation data.')
    group.add_argument('--enable-gradient-checkpointing', action='store_true')
    group.add_argument('--fp16', action='store_true', help='Run model in fp16 mode.')
    group.add_argument('--bf16', action='store_true', help='Run model in bfloat16 mode.')
    group.add_argument('--load', type=str, default=None)
    group.add_argument('--save', type=str, default=None)
    group.add_argument('--lr', type=float, default=None,
                       help='Initial learning rate. Depending on decay style and initial warmup, the learing rate at '
                            'each iteration would be different.')
    parser.add_argument('--model', type=str, help='name and size of the model',
                        choices=['llama2-13b', 'qwen-7b', 'qwen-14b', 'qwen1.5-32b', 'qwen-72b'])
    parser.add_argument('--flash', action='store_true', help='use flash attention, only work for llama2-13b.')
    return parser


parser = argparse.ArgumentParser(description='PyTorch LLaMA Training')
parser = get_patch_args(parser)
args = parser.parse_args()


class LlamaAttentionWithFlash(LlamaAttention):
    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_value: Optional[Tuple[torch.Tensor]] = None,
            output_attentions: bool = False,
            use_cache: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        bsz, q_len, _ = hidden_states.size()
        query_states = (
            self.q_proj(hidden_states)
            .view(bsz, q_len, self.num_heads, self.head_dim)
            .transpose(1, 2)
        )
        key_states = (
            self.k_proj(hidden_states)
            .view(bsz, q_len, self.num_heads, self.head_dim)
            .transpose(1, 2)
        )
        value_states = (
            self.v_proj(hidden_states)
            .view(bsz, q_len, self.num_heads, self.head_dim)
            .transpose(1, 2)
        )
        kv_seq_len = key_states.shape[-2]
        assert past_key_value is None, "past_key_value is not supported"
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
        query_states, key_states = apply_rotary_pos_emb(
            query_states, key_states, cos, sin, position_ids
        )
        assert not output_attentions, "output_attentions is not supported"
        if past_key_value is not None:
            key_states = cat([past_key_value[0], key_states], dim=2)
            value_states = cat([past_key_value[1], value_states], dim=2)
        past_key_value = (key_states, value_states) if use_cache else None
        qkv = stack([query_states, key_states, value_states], dim=2)
        qkv = qkv.transpose(1, 3)
        key_padding_mask = attention_mask
        if key_padding_mask is None:
            qkv = rearrange(qkv, "b s ... -> (b s) ...")
            max_s = q_len
            cu_q_lens = arange(0, (bsz + 1) * q_len, step=q_len, dtype=int32, device=qkv.device)
            output = flash_attn_varlen_qkvpacked_func(qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True)
            output = rearrange(output, "(b s) ... -> b s ...", b=bsz)
        else:
            nheads = qkv.shape[-2]
            x = rearrange(qkv, "b s three h d -> b s (three h d)")
            x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask)
            x_unpad = rearrange(x_unpad, "nnz (three h d) -> nnz three h d", three=3, h=nheads)
            output_unpad = flash_attn_varlen_qkvpacked_func(x_unpad, cu_q_lens, max_s, 0.0,
                                                            softmax_scale=None, causal=True)
            output = rearrange(
                pad_input(rearrange(output_unpad, "nnz h d -> nnz (h d)"), indices, bsz, q_len),
                "b s (h d) -> b s h d",
                h=nheads,
            )
        return self.o_proj(rearrange(output, "b s h d -> b s (h d)")), None, past_key_value


class LlamaDecoderLayerWithFlash(LlamaDecoderLayer):
    def __init__(self, config: LlamaConfig):
        super().__init__(config)
        self.self_attn = LlamaAttentionWithFlash(config=config)


class LlamaModelWithFlash(LlamaModel):
    def __init__(self, config: LlamaConfig):
        super().__init__(config)
        # replace by layer with flash attention
        self.layers = nn.ModuleList([LlamaDecoderLayerWithFlash(config) for _ in range(config.num_hidden_layers)])
        self.post_init()

    def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
        return attention_mask


class LlamaForCausalLMWithFlash(LlamaForCausalLM):
    def __init__(self, config):
        super().__init__(config)
        self.model = LlamaModelWithFlash(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        # initialize weights again and apply final processing after the replacement
        self.post_init()


def tokenize(strings, tokenizer):
    tokenized_list = [
        tokenizer(
            text,
            return_tensors='np',
            padding='max_length',
            max_length=args.seq_length,
            truncation=True,
        ) for text in strings
    ]
    input_ids = labels = [
        tokenized.input_ids[0] for tokenized in tokenized_list
    ]
    input_ids_lens = labels_lens = [
        (tokenized.input_ids != tokenizer.pad_token_id).sum().item()
        for tokenized in tokenized_list
    ]
    return dict(
        input_ids=input_ids,
        labels=labels,
        input_ids_lens=input_ids_lens,
        labels_lens=labels_lens,
    )


def preprocess(sources, targets, tokenizer):
    """Preprocess the data by tokenizing."""
    examples = [s + t for s, t in zip(sources, targets)]
    examples_tokenized, sources_tokenized = [tokenize(strings, tokenizer) for strings in (examples, sources)]
    input_ids = examples_tokenized['input_ids']
    labels = copy.deepcopy(input_ids)
    for label, source_len in zip(labels, sources_tokenized['input_ids_lens']):
        label[:source_len] = -100
    return dict(input_ids=input_ids, labels=labels)


def init_weight(model):
    def _init_weight(module):
        if hasattr(module, 'weight'):
            nn.init.normal_(module.weight, 0., 0.1)
        if hasattr(module, 'bias') and module.bias is not None:
            nn.init.constant_(module.bias, 0)

    model.apply(_init_weight)


def save_hf_format(model, tokenizer, args, sub_folder=""):
    # used to save huggingface format, so we can use it for hf.from_pretrained
    model_to_save = model.module if hasattr(model, 'module') else model
    CONFIG_NAME = "config.json"
    WEIGHTS_NAME = "pytorch_model.bin"
    output_dir = os.path.join(args.save, sub_folder)
    os.makedirs(output_dir, exist_ok=True)
    output_model_file = os.path.join(output_dir, WEIGHTS_NAME)
    output_config_file = os.path.join(output_dir, CONFIG_NAME)
    save_dict = model_to_save.state_dict()
    for key in list(save_dict.keys()):
        if "lora" in key:
            del save_dict[key]
    torch.save(save_dict, output_model_file)
    model_to_save.config.to_json_file(output_config_file)
    tokenizer.save_vocabulary(output_dir)


def _z3_params_to_fetch(param_list):
    return [
        p for p in param_list
        if hasattr(p, 'ds_id') and p.ds_status == ZeroParamStatus.NOT_AVAILABLE
    ]


def save_zero_three_model(model_ema, global_rank, save_dir, zero_stage=0):
    zero_stage_3 = (zero_stage == 3)
    os.makedirs(save_dir, exist_ok=True)
    WEIGHTS_NAME = "pytorch_model.bin"
    output_model_file = os.path.join(save_dir, WEIGHTS_NAME)

    model_to_save = model_ema.module if hasattr(model_ema, 'module') else model_ema
    if not zero_stage_3:
        if global_rank == 0:
            torch.save(model_to_save.state_dict(), output_model_file)
    else:
        output_state_dict = {}
        for k, v in model_to_save.named_parameters():
            if hasattr(v, 'ds_id'):
                with deepspeed.zero.GatheredParameters(_z3_params_to_fetch([v]), enabled=zero_stage_3):
                    v_p = v.data.cpu()
            else:
                v_p = v.cpu()
            if global_rank == 0 and "lora" not in k:
                output_state_dict[k] = v_p
        if global_rank == 0:
            torch.save(output_state_dict, output_model_file)
        del output_state_dict


def main():
    training_args = TrainingArguments(
        output_dir=args.save,
        overwrite_output_dir=True,
        bf16=args.bf16,
        fp16=args.fp16,
        deepspeed='./ds_config.json',
        do_train=True,
        num_train_epochs=args.epochs,
        per_device_train_batch_size=args.micro_batch_size,
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        do_eval=False,
        per_device_eval_batch_size=args.micro_batch_size,
        dataloader_num_workers=args.num_workers,
        learning_rate=args.lr,
        adam_beta1=0.9,
        adam_beta2=0.95,
        warmup_ratio=0.1,
        logging_strategy='steps',
        log_level='info',
        logging_dir=args.logging_dir,
        logging_steps=1,
        disable_tqdm=False,
        save_strategy='epoch',
        ddp_timeout=18000
    )

    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    transformers.utils.logging.set_verbosity_info()
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")
    transformers.set_seed(training_args.seed)

    data_files = {
        "train": [os.path.join(args.train_data, f) for f in os.listdir(args.train_data)] if os.path.isdir(
            args.train_data) else args.train_data,
        "validation": [os.path.join(args.valid_data, f) for f in os.listdir(args.valid_data)] if os.path.isdir(
            args.valid_data) else args.valid_data
    }

    raw_datasets = load_dataset(
        'json',
        data_files=data_files,
        cache_dir=None,
        use_auth_token=None,
    )

    tokenizer = AutoTokenizer.from_pretrained(args.load, trust_remote_code=True)
    if args.model in ('qwen-7b', 'qwen-14b', 'qwen1.5-32b', 'qwen-72b'):
        tokenizer.eos_token = '<|endoftext|>'
        tokenizer.pad_token = tokenizer.eos_token

    init_contexts = [no_init_weights(_enable=False)]
    if is_deepspeed_zero3_enabled():
        logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
        init_contexts = [deepspeed.zero.Init(config_dict_or_path=deepspeed_config())] + init_contexts
    if args.model == 'llama2-13b':
        config = transformers.CONFIG_MAPPING['llama'](
            num_hidden_layers=args.num_layers,
            hidden_size=args.hidden_size,
            num_attention_heads=args.num_attention_heads,
            intermediate_size=args.intermediate_size,
            use_cache=True
        )
        if args.flash:
            if not support_flash_attn:
                raise ImportError('FlashAttention is not available, please install with pip install flash-attn')
            logger.info(f"enable flash attention {fa_version}")
            if args.load:
                # init_contexts will be constructed in the `from_pretrained`
                model = LlamaForCausalLMWithFlash.from_pretrained(
                    args.load,
                    from_tf=False,
                    config=config,
                    revision='main',
                    use_auth_token=None,
                    low_cpu_mem_usage=False,
                )
            else:
                with ContextManagers(init_contexts):
                    model = LlamaForCausalLMWithFlash(config)
                    init_weight(model)
        else:
            logger.info("disable flash attention")
            if args.load:
                model = LlamaForCausalLM.from_pretrained(
                    args.load,
                    from_tf=False,
                    config=config,
                    revision='main',
                    use_auth_token=None,
                    low_cpu_mem_usage=False,
                )
            else:
                with ContextManagers(init_contexts):
                    model = LlamaForCausalLM(config)
                    init_weight(model)
    else:
        model = AutoModelForCausalLM.from_pretrained(
            args.load,
            from_tf=False,
            torch_dtype=torch.float16 if args.fp16 else torch.bfloat16,
            trust_remote_code=True
        )

    model.to('cuda')
    if args.enable_gradient_checkpointing:
        model.gradient_checkpointing_enable()

    n_params = model.num_parameters()
    logger.info(f"Training model with {n_params * 1e-9:.2f}B model")
    embedding_size = model.get_input_embeddings().weight.shape[0]

    if len(tokenizer) > embedding_size:
        model.resize_token_embeddings(len(tokenizer))

    def tokenize_function(examples):
        sources = examples['input']
        targets = [x + tokenizer.eos_token for x in examples['output']]
        data_dict = preprocess(sources, targets, tokenizer)
        return data_dict

    with training_args.main_process_first(desc="dataset map tokenization"):
        num_proc = 1 if args.model in ('qwen-7b', 'qwen-14b', 'qwen1.5-32b', 'qwen-72b') else 64
        lm_datasets = raw_datasets.map(
            tokenize_function,
            batched=True,
            num_proc=num_proc
        )

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=lm_datasets["train"],
        eval_dataset=lm_datasets["validation"],
        tokenizer=tokenizer,
        data_collator=default_data_collator,
    )
    trainer.train()

    if args.save is not None:
        args.global_rank = torch.distributed.get_rank()
        print('saving the final model ...', args.global_rank)

        if args.global_rank == 0:
            save_hf_format(model, tokenizer, args)

        if is_deepspeed_zero3_enabled():
            # For zero stage 3, each gpu only has a part of the model, so we need a special save function
            save_zero_three_model(model, args.global_rank, args.save, zero_stage=3)


if __name__ == "__main__":
    main()