pretrain_deepseek.py 9.3 KB
Newer Older
hepj's avatar
hepj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.
"""Pretrain GPT."""

import os
from functools import partial
from typing import Union

import torch
import torch._dynamo
from megatron.core import mpu
from megatron.core.datasets.blended_megatron_dataset_builder import (
    BlendedMegatronDatasetBuilder,
)
from megatron.core.datasets.gpt_dataset import (
    GPTDataset,
    GPTDatasetConfig,
    MockGPTDataset,
)
from megatron.core.packed_seq_params import PackedSeqParams
from megatron.core.datasets.utils import get_blend_from_list
from megatron.core.enums import ModelType
from megatron.training import get_args, get_timers, pretrain, print_rank_0
from megatron.training.arguments import core_transformer_config_from_args
from megatron.training.utils import (
    average_losses_across_data_parallel_group,
    get_batch_on_this_cp_rank,
    get_batch_on_this_tp_rank,
)


from megatron_patch.arguments import get_patch_args
from megatron_patch.tokenizer import build_tokenizer, get_tokenizer
from megatron_patch.data import build_pretrain_dataset_from_original
from megatron_patch.data.utils import get_batch_on_this_tp_rank_original, get_batch_on_this_tp_rank_idxmap_sft


from megatron_patch.model.deepseek_v2.layer_specs import (
    get_gpt_layer_with_transformer_engine_spec,
)
from megatron_patch.model.deepseek_v2.model import GPTModel
from megatron_patch.model.deepseek_v2.transformer_config import DeepSeekV2TransformerConfig



torch._dynamo.config.suppress_errors = True


def model_provider(
    pre_process=True, post_process=True
) -> Union[GPTModel]:

    args = get_args()
    build_tokenizer(args)
    config = core_transformer_config_from_args(args, DeepSeekV2TransformerConfig)
    use_te = args.transformer_impl == "transformer_engine"

    if use_te:
        print_rank_0("building deepseek_v2 model in TE...")
        transformer_layer_spec = get_gpt_layer_with_transformer_engine_spec(
            args.num_experts, args.moe_grouped_gemm, args.qk_layernorm
        )
    else:
        raise ValueError("Current only support TE")

    model = GPTModel(
        config=config,
        transformer_layer_spec=transformer_layer_spec,
        vocab_size=args.padded_vocab_size,
        max_sequence_length=args.max_position_embeddings,
        pre_process=pre_process,
        post_process=post_process,
        fp16_lm_cross_entropy=args.fp16_lm_cross_entropy,
        parallel_output=True,
        share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights,
        position_embedding_type=args.position_embedding_type,
        rotary_percent=args.rotary_percent,
        rotary_base=args.rotary_base,
        seq_len_interpolation_factor=args.rotary_seq_len_interpolation_factor,
    )

    return model


def get_batch(data_iterator):
    """Generate a batch."""

    # TODO: this is pretty hacky, find a better way
    if (not mpu.is_pipeline_first_stage()) and (not mpu.is_pipeline_last_stage()):
        return None, None, None, None, None, None

    args = get_args()

    if "-Raw" in args.dataset:
        if args.train_mode == "pretrain":
            raise ValueError('The LLama-SFT-Raw dataset should only be used for finetuning!')
        # get batches based on the TP rank you are on
        batch = get_batch_on_this_tp_rank_original(data_iterator)
        # slice batch along sequence dimension for context parallelism
        batch = get_batch_on_this_cp_rank(batch)

        return tuple([*batch.values(), None])
    elif "-Idxmap" in args.dataset:
        # get batches based on the TP rank you are on
        if args.train_mode == "pretrain":
            batch = get_batch_on_this_tp_rank(data_iterator)
        else:
            batch = get_batch_on_this_tp_rank_idxmap_sft(data_iterator)

        packed_seq_params = None
        if args.reset_position_ids:
            # sequence-packing, build cu_seqlens
            position_ids = batch.get('position_ids', None)
            if position_ids is not None:
                # mbs = 1
                position_ids = position_ids[0] # shape: [seq_length]
                start_indices = (position_ids == 0).nonzero(as_tuple=True)[0]
                seqlens = start_indices[1:] - start_indices[:-1]
                # NOTE: cu_seqlens: [0, A1, A1+A2, A1+A2+A3, ..., seq_len]
                cu_seqlens = torch.zeros(start_indices.shape[0] + 1, device=position_ids.device, dtype=torch.int)
                cu_seqlens[1:-1] = torch.cumsum(seqlens, dim=0)
                cu_seqlens[-1] = position_ids.shape[0]
                packed_seq_params = PackedSeqParams(
                    cu_seqlens_q=cu_seqlens,
                    cu_seqlens_kv=cu_seqlens,
                    qkv_format='thd'
                )

        if packed_seq_params is not None and args.context_parallel_size > 1:
            raise ValueError('Sequence Packing is not supported when CP>1 !')
        # slice batch along sequence dimension for context parallelism
        batch = get_batch_on_this_cp_rank(batch)

        return tuple([*batch.values(), packed_seq_params])
    else:
        raise ValueError("please set correct --dataset ")


def loss_func(loss_mask: torch.Tensor, output_tensor: torch.Tensor):
    """Loss function.

    Args:
        loss_mask (torch.Tensor): Used to mask out some portions of the loss
        output_tensor (torch.Tensor): The tensor with the losses
    """
    args = get_args()

    losses = output_tensor.float()
    loss_mask = loss_mask.view(-1).float()
    if args.context_parallel_size > 1:
        loss = torch.cat(
            [torch.sum(losses.view(-1) * loss_mask).view(1), loss_mask.sum().view(1)]
        )
        torch.distributed.all_reduce(loss, group=mpu.get_context_parallel_group())
        loss = loss[0] / loss[1]
    else:
        loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()

    # Check individual rank losses are not NaN prior to DP all-reduce.
    if args.check_for_nan_in_loss_and_grad:
        global_rank = torch.distributed.get_rank()
        assert not loss.isnan(), (
            f"Rank {global_rank}: found NaN in local forward loss calculation. "
            f"Device: {torch.cuda.current_device()}, node: {os.uname()[1]}"
        )

    # Reduce loss for logging.
    averaged_loss = average_losses_across_data_parallel_group([loss])

    return loss * args.context_parallel_size, {"lm loss": averaged_loss[0]}


def forward_step(data_iterator, model: GPTModel):
    """Forward training step.

    Args:
        data_iterator : Input data iterator
        model (GPTModel): The GPT Model
    """
    timers = get_timers()
    args = get_args()

    # Get the batch.
    timers("batch-generator", log_level=2).start()
    tokens, labels, loss_mask, attention_mask, position_ids, packed_seq_params = get_batch(data_iterator)
    timers("batch-generator").stop()
    output_tensor = model(tokens, position_ids, attention_mask, labels=labels, packed_seq_params=packed_seq_params)

    return output_tensor, partial(loss_func, loss_mask)


def is_dataset_built_on_rank():
    return (
        mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()
    ) and mpu.get_tensor_model_parallel_rank() == 0


def core_gpt_dataset_config_from_args(args):
    tokenizer = get_tokenizer()

    return GPTDatasetConfig(
        random_seed=args.seed,
        sequence_length=args.seq_length,
        blend=get_blend_from_list(args.data_path),
        blend_per_split=[
            get_blend_from_list(args.train_data_path),
            get_blend_from_list(args.valid_data_path),
            get_blend_from_list(args.test_data_path),
        ],
        split=args.split,
        num_dataset_builder_threads=args.num_dataset_builder_threads,
        path_to_cache=args.data_cache_path,
        mmap_bin_files=args.mmap_bin_files,
        tokenizer=tokenizer,
        reset_position_ids=args.reset_position_ids,
        reset_attention_mask=args.reset_attention_mask,
        eod_mask_loss=args.eod_mask_loss,
        create_attention_mask=args.create_attention_mask_in_dataloader,
    )


def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build the train test and validation datasets.

    Args:
        train_val_test_num_samples : A list containing the number of samples in train test and validation.
    """
    args = get_args()
    print_rank_0("> building train, validation, and test datasets for GPT ...")

    if "-Raw" in args.dataset:
        train_ds, valid_ds, test_ds = build_pretrain_dataset_from_original(args.dataset)
    else:
        config = core_gpt_dataset_config_from_args(args)

        # NOTE: in preparation scripts, the sequence is collect into (seq, labels)
        # therefore we need to double the seqlen
        if args.train_mode != "pretrain":
            config.sequence_length = config.sequence_length * 2

        if config.mock:
            dataset_type = MockGPTDataset
        else:
            dataset_type = GPTDataset
        train_ds, valid_ds, test_ds = BlendedMegatronDatasetBuilder(
            dataset_type, train_val_test_num_samples, is_dataset_built_on_rank, config
        ).build()

        print_rank_0("> finished creating GPT datasets ...")

    return train_ds, valid_ds, test_ds


if __name__ == "__main__":

    train_valid_test_datasets_provider.is_distributed = True

    pretrain(
        train_valid_test_datasets_provider,
        model_provider,
        ModelType.encoder_or_decoder,
        forward_step,
        extra_args_provider=get_patch_args,
    )