"ollama/docs/tutorials/nvidia-jetson.md" did not exist on "22cb4ffc026b1fb71549031f174dc92f3751db56"
run_pretrain_megatron_llama.sh 5.75 KB
Newer Older
hepj's avatar
hepj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#!/bin/bash
#sh run_pretrain_megatron_llama.sh dsw /workspace/Pai-Megatron-Patch 7B 1 8 1e-5 1e-6 2048 2048 0 bf16 1 1 sel true true true false 100000 /mnt/llama2-datasets/wudao_llamabpe_text_document /mnt/llama2-ckpts/Llama-2-7b-hf-to-mg-tp1-pp1/ 10000000000 100000000 /mnt/output_patch_test
set -e
ENV=$1
MEGATRON_PATCH_PATH=$2
MEGATRON_PATH=${MEGATRON_PATCH_PATH}/Megatron-LM-231007
export PYTHONPATH=${MEGATRON_PATH}:${MEGATRON_PATCH_PATH}:$PYTHONPATH
export CUDA_DEVICE_MAX_CONNECTIONS=1
if [ $ENV = dsw ]; then
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
MASTER_ADDR=localhost
MASTER_PORT=$(shuf -n 1 -i 10000-65535)
NNODES=1
NODE_RANK=0
GPUS_PER_NODE=8

elif [ $ENV = dlc ]; then

NNODES=${WORLD_SIZE}
NODE_RANK=${RANK}
GPUS_PER_NODE=${KUBERNETES_CONTAINER_RESOURCE_GPU}

fi

DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT"

MODEL_SIZE=$3
BATCH_SIZE=$4
GLOBAL_BATCH_SIZE=$5
LR=$6
MIN_LR=$7
SEQ_LEN=$8
PAD_LEN=$9
EXTRA_VOCAB_SIZE=${10}
PR=${11}
TP=${12}
PP=${13}
AC=${14}
DO=${15}
FL=${16}
SP=${17}
TE=${18}
SAVE_INTERVAL=${19}
DATASET_PATH=${20}
PRETRAIN_CHECKPOINT_PATH=${21}
TRAIN_TOKENS=${22}
WARMUP_TOKENS=${23}
OUTPUT_BASEPATH=${24}


if [ $MODEL_SIZE = 7B ]; then

NUM_LAYERS=32
HIDDEN_SIZE=4096
NUM_ATTN_HEADS=32
INTERMEDIATE_SIZE=11008

gqa_options=""

elif [ $MODEL_SIZE = 13B ]; then

NUM_LAYERS=40
HIDDEN_SIZE=5120
NUM_ATTN_HEADS=40
INTERMEDIATE_SIZE=13824

gqa_options=""

elif [ $MODEL_SIZE = 34B ]; then

NUM_LAYERS=48
HIDDEN_SIZE=8192
NUM_ATTN_HEADS=64
INTERMEDIATE_SIZE=22016

gqa_options=" \
		    --group-query-attention \
		    --num-query-groups 8"

fi

if [ $AC = full ]; then
    activation_checkpoint_options=" \
		    --recompute-method uniform \
		    --recompute-granularity full"
elif [ $AC = sel ]; then
    activation_checkpoint_options=" \
        --recompute-activations"
elif [ $AC = none ]; then
    activation_checkpoint_options=" \
                    "
fi

if [ $PR = fp16 ]; then
    pr_options=" \
		    --fp16"
elif [ $PR = bf16 ]; then
    pr_options=" \
        --bf16"
elif [ $PR = fp8 ]; then
    pr_options=" \
        --bf16
        --fp8-hybrid \
        --fp8-amax-compute-algo max \
        --fp8-amax-history-len 1024 \
        --transformer-impl transformer_engine"
fi

if [ $DO = true ]; then
    do_options=" \
		    --use-distributed-optimizer"

elif [ $DO = false ]; then
    do_options=" \
                    "
fi

if [ $FL = true ]; then
    flash_options=" \
		    --use-flash-attn"

elif [ $FL = false ]; then
    flash_options=" \
                    "
fi

if [ $TE = true ]; then
    te_options=" \
		    --transformer-impl transformer_engine"

elif [ $TE = false ]; then
    te_options=" \
                    "
fi

if [ $SP = true ] && [ $TP -gt 1 ]; then
    sp_options=" \
		    --sequence-parallel"

elif [ $SP = false ]; then
    sp_options=" \
                    "
fi

if [ $PRETRAIN_CHECKPOINT_PATH != none ]; then
    load_options=" \
            --load $PRETRAIN_CHECKPOINT_PATH"
fi

TRAIN_ITERS=$(( ${TRAIN_TOKENS} / ${GLOBAL_BATCH_SIZE} / ${SEQ_LEN} ))
LR_WARMUP_ITERS=$(( ${WARMUP_TOKENS}  / ${GLOBAL_BATCH_SIZE} / ${SEQ_LEN} ))
LR_DECAY_ITERS=$(( ${TRAIN_TOKENS} /  ${GLOBAL_BATCH_SIZE} / ${SEQ_LEN} ))

NAME="${ENV}-pretrain-megatron-gpt3-${MODEL_SIZE}-lr-${LR}-bs-${BATCH_SIZE}-seqlen-${SEQ_LEN}-pr-${PR}-tp-${TP}-pp-${PP}-ac-${AC}-do-${DO}-sp-${SP}-tt-${TRAIN_TOKENS}-wt-${WARMUP_TOKENS}"
mkdir -p "${OUTPUT_BASEPATH}/tensorboard/"
mkdir -p "${OUTPUT_BASEPATH}/checkpoint/"
mkdir -p "${OUTPUT_BASEPATH}/log/"
current_time=$(date "+%Y.%m.%d-%H.%M.%S")
TENSORBOARD_DIR="${OUTPUT_BASEPATH}/tensorboard/${NAME}_${current_time}"
mkdir -p ${TENSORBOARD_DIR}

SAVED_PRETRAIN_CHECKPOINT_PATH="${OUTPUT_BASEPATH}/checkpoint/${NAME}"

megatron_options="  \
        --save ${SAVED_PRETRAIN_CHECKPOINT_PATH} \
        --split 98,2,0 \
        --train-data-path ${DATASET_PATH}
        --lr ${LR} \
        --min-lr ${MIN_LR} \
        --lr-decay-style linear \
        --adam-beta1 0.9 \
        --adam-beta2 0.95 \
        --weight-decay 0.1 \
        --clip-grad 1.0 \
        --init-method-std 0.006 \
        --lr-decay-iters ${LR_DECAY_ITERS} \
        --lr-warmup-iters ${LR_WARMUP_ITERS} \
        --train-iters ${TRAIN_ITERS} \
        --micro-batch-size ${BATCH_SIZE} \
        --global-batch-size ${GLOBAL_BATCH_SIZE} \
        --num-layers ${NUM_LAYERS} \
        --hidden-size ${HIDDEN_SIZE} \
        --num-attention-heads ${NUM_ATTN_HEADS} \
        --ffn-hidden-size ${INTERMEDIATE_SIZE} \
        --seq-length ${SEQ_LEN} \
        --max-position-embeddings ${SEQ_LEN} \
        --log-interval 1 \
        --eval-interval 10000 \
        --eval-iters 10 \
        --save-interval ${SAVE_INTERVAL} \
        --tensorboard-queue-size 1 \
        --tensorboard-dir ${TENSORBOARD_DIR} \
        --log-timers-to-tensorboard \
        --log-batch-size-to-tensorboard \
        --log-validation-ppl-to-tensorboard \
        --tensor-model-parallel-size ${TP} \
        --pipeline-model-parallel-size ${PP} \
        --dataset LLama-Pretrain-Idxmap \
        --no-load-optim \
        --no-load-rng \
        --num-workers 8 \
        --seed 1234 \
        --max-padding-length ${PAD_LEN} \
        --extra-vocab-size ${EXTRA_VOCAB_SIZE} \
        --patch-tokenizer-type LLamaTokenizer \
        --swiglu \
        --normalization RMSNorm \
        --use-llama2-rotary-position-embeddings \
        --position-embedding-type rope \
        --untie-embeddings-and-output-weights \
        --rotary-base 1000000 \
        --disable-bias-linear
        "

run_cmd="torchrun $DISTRIBUTED_ARGS pretrain_megatron_llama.py
 ${megatron_options} ${pr_options} ${load_options} ${te_options} ${activation_checkpoint_options} ${do_options} ${flash_options} ${sp_options} ${gqa_options}"

echo ${run_cmd}
eval ${run_cmd}
set +x