pretrain_megatron_baichuan.py 4.17 KB
Newer Older
hepj's avatar
hepj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (c) 2023 Alibaba PAI and Nvidia Megatron-LM Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import partial
import torch
import os

from megatron.core.enums import ModelType
from megatron.utils import get_ltor_masks_and_position_ids
from megatron.arguments import core_transformer_config_from_args
from megatron import get_args
from megatron import get_timers
from megatron.core import tensor_parallel
from megatron.utils import average_losses_across_data_parallel_group

from megatron_patch.data import \
    build_pretrain_dataset_from_original, build_pretrain_dataset_from_idxmap
from megatron_patch.model.baichuan2.gpt_model import GPTModel
from megatron_patch.tokenizer import get_tokenizer, build_tokenizer
from megatron_patch.training import pretrain
from megatron_patch.arguments import get_patch_args

def model_provider(pre_process=True, post_process=True):
    args = get_args()
    build_tokenizer(args)
    config = core_transformer_config_from_args(get_args())
    model = GPTModel(
        config,
        num_tokentypes=0,
        parallel_output=True,
        pre_process=pre_process,
        post_process=post_process
    )
    return model

def get_batch(data_iterator):
    """Generate a batch"""
    args = get_args()
    tokenizer = get_tokenizer()
    datatype = torch.int64

    keys = ['input_ids', 'labels']
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    data_b = tensor_parallel.broadcast_data(keys, data, datatype)
    tokens_ = data_b['input_ids'].long()

    labels = tokens_[:, 1:].contiguous()
    tokens = tokens_[:, :-1].contiguous()


    # Get the masks and postition ids.
    attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
        tokens,
        tokenizer.pad_token_id,
        args.reset_position_ids,
        args.reset_attention_mask,
        True)

    return tokens, labels, loss_mask, attention_mask, position_ids

def loss_func(loss_mask, output_tensor):
    losses = output_tensor.float()
    loss_mask = loss_mask.view(-1).float()
    loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()

    # Reduce loss for logging.
    averaged_loss = average_losses_across_data_parallel_group([loss])

    return loss, {'lm loss': averaged_loss[0]}


def forward_step(data_iterator, model):
    """Forward step."""
    timers = get_timers()

    # Get the batch.
    timers('batch-generator', log_level=2).start()
    tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
        data_iterator)
    timers('batch-generator').stop()

    output_tensor = model(tokens, None, attention_mask,
                          labels=labels)

    return output_tensor, partial(loss_func, loss_mask)


def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid, and test datasets."""
    args = get_args()

    if os.path.isfile(args.train_data_path[0]):
        train_ds, valid_ds, test_ds = \
            build_pretrain_dataset_from_original(args.dataset)
    else:
        train_ds, valid_ds, test_ds = \
            build_pretrain_dataset_from_idxmap(
                data_prefix=args.train_data_path,
                max_padding_length=args.max_padding_length,
                dataset_type=args.dataset,
                splits_string=args.split,
                train_valid_test_num_samples=train_val_test_num_samples,
                seed=args.seed,
                skip_warmup=(not args.mmap_warmup)
            )

    return train_ds, valid_ds, test_ds


if __name__ == "__main__":

    pretrain(train_valid_test_datasets_provider, model_provider,
             ModelType.encoder_or_decoder,
             forward_step,
             extra_args_provider=get_patch_args)