loader_mixtral_hf.py 12.7 KB
Newer Older
hepj's avatar
hepj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.

import json
import os
import sys
import torch
import transformers
from tqdm import tqdm
import types


def add_arguments(parser):
    group = parser.add_argument_group(title='Mixtral HF loader.')

    group.add_argument('--true-vocab-size', type=int, default=None,
                       help='original size of vocab, if specified will trim padding from embedding table.')
    group.add_argument('--vocab-file', type=str, default=None,
                       help='Path to the vocab file. If specified will use this to get vocab size and '
                       'trim padding from the embedding table.')
    group.add_argument('--tokenizer-model', required=True,
                       help='Sentencepiece tokenizer model.')
    group.add_argument('--megatron-path', type=str, default=None,
                       help='Base directory of deepspeed repository')


def load_args_from_checkpoint(args):
    # Read Mixtral 8x7B args.
    from transformers import MixtralConfig
    mixtral_config = MixtralConfig.from_pretrained(args.load)

    # Update Megatron args.
    args.untie_embeddings_and_output_weights = True
    args.seq_length = 4096
    args.global_batch_size = 1024
    args.iteration = 1 # '0', 'release' don't work
    args.add_position_embedding = False
    args.use_rotary_position_embeddings = True
    args.swiglu = True
    args.bf16 = True
    args.add_bias_linear = False
    args.normalization = "RMSNorm"
    args.tokenizer_type = "Llama2Tokenizer"
    args.disable_bias_linear = True

    args.max_position_embeddings = mixtral_config.max_position_embeddings
    args.hidden_size = mixtral_config.hidden_size
    args.num_attention_heads = mixtral_config.num_attention_heads
    args.num_layers = mixtral_config.num_hidden_layers
    args.norm_epsilon = mixtral_config.rms_norm_eps
    args.vocab_size = mixtral_config.vocab_size
    args.padded_vocab_size = mixtral_config.vocab_size
    args.mixtral = mixtral_config
    args.ffn_hidden_size = mixtral_config.intermediate_size
    args.num_experts = mixtral_config.num_local_experts
    args.sequence_parallel = True

    if mixtral_config.num_key_value_heads:
        args.group_query_attention = True
        args.num_query_groups = mixtral_config.num_key_value_heads

def verify_transformers_version():
    major, minor, patch = map(int, transformers.__version__.split('.'))
    assert major >= 4 and minor >= 36

def set_preprocess_state(args, model, hf_model):
    '''Set embedding params.'''
    model.embedding.word_embeddings.weight.data.copy_(
        hf_model.model.embed_tokens.weight)

def set_postprocess_state(args, model, hf_model):
    '''Set output layer & norm params.'''
    model.decoder.final_layernorm.weight.data.copy_(hf_model.model.norm.weight)
    model.output_layer.weight.data.copy_(hf_model.lm_head.weight)

def set_attn_state(args, layer, hf_layer):
    '''Set self-attention params.'''

    # Get attention layer & state.
    attn = layer.self_attention
    hf_attn = hf_layer.self_attn

    # Reshape loaded weights.
    tp = args.tensor_model_parallel_size
    num_heads = args.num_attention_heads // tp
    num_query_groups = (args.num_query_groups if args.group_query_attention else args.num_attention_heads) // tp
    num_querys_per_group = num_heads // num_query_groups
    dim = args.kv_channels
    assert num_heads % num_querys_per_group == 0

    # Copy weights (re-order dimensions for Megatron).
    attn.linear_qkv.weight.data.copy_(torch.cat([
        hf_attn.q_proj.weight.reshape((num_query_groups, num_querys_per_group*dim, -1)),
        hf_attn.k_proj.weight.reshape((num_query_groups, dim, -1)),
        hf_attn.v_proj.weight.reshape((num_query_groups, dim, -1)),
    ], dim=1).reshape((-1, args.hidden_size)))
    attn.linear_proj.weight.data.copy_(hf_attn.o_proj.weight)

def set_mlp_state(args, layer, hf_layer):
    '''Set MLP params.'''

    layer.mlp.router.weight.data.copy_(hf_layer.block_sparse_moe.gate.weight)

    mcore_experts = layer.mlp.experts.local_experts
    hf_experts = hf_layer.block_sparse_moe.experts
    for expert_idx in range(args.num_experts):
        mcore_experts[expert_idx].linear_fc1.weight.data.copy_(
            torch.cat([
                hf_experts[expert_idx].w1.weight,
                hf_experts[expert_idx].w3.weight
            ], dim=0)
        )
        mcore_experts[expert_idx].linear_fc2.weight.data.copy_(
            hf_experts[expert_idx].w2.weight
        )

def set_layer_state(args, model, hf_model, layer_idx):
    '''Set transformer layer params.'''

    layer = model.decoder.layers[layer_idx]
    hf_layer = hf_model.model.layers[layer_idx]

    set_attn_state(args, layer, hf_layer)
    set_mlp_state(args, layer, hf_layer)

    layer.self_attention.linear_qkv.layer_norm_weight.data.copy_(hf_layer.input_layernorm.weight)
    layer.pre_mlp_layernorm.weight.data.copy_(hf_layer.post_attention_layernorm.weight)

def load_checkpoint_to_model(args):
    '''Set model params.'''

    from pretrain_gpt import model_provider
    from transformers import MixtralForCausalLM, MixtralConfig

    # Load Huggingface model.

    hf_model = MixtralForCausalLM.from_pretrained(args.load, device_map="cpu")

    # Init Megatron model.
    model = model_provider(True, True).to(args.params_dtype)

    # Set model state.
    set_preprocess_state(args, model, hf_model)
    set_postprocess_state(args, model, hf_model)
    for layer_idx in tqdm(range(args.num_layers), "set layer states"):
        set_layer_state(args, model, hf_model, layer_idx)
    return model


def _load_checkpoint(queue, args):

    # Llama-2 requires HF transformers >=4.31.0.
    verify_transformers_version()

    # Search in directory above this.
    sys.path.append(os.path.abspath(
        os.path.join(os.path.dirname(__file__),
                     os.path.pardir,
                     os.path.pardir)))
    if args.megatron_path is not None:
        sys.path.insert(0, args.megatron_path)

    try:
        from megatron.training.arguments import parse_args, validate_args
        from megatron.training.global_vars import set_args, set_global_variables
        from megatron.legacy.model import module
        from megatron.core import mpu
        from megatron.core.enums import ModelType
        from megatron.legacy import fused_kernels
    except ModuleNotFoundError:
        print("Unable to import Megatron, please specify the path to Megatron using --megatron-path. Exiting.")
        queue.put("exit")
        exit(1)

    # We want all arguments to come from us.
    sys.argv = ['script.py',
                '--use-mcore-models',
                '--disable-bias-linear',
                '--no-masked-softmax-fusion',
                '--no-bias-gelu-fusion',
                '--no-bias-dropout-fusion',
                '--no-async-tensor-model-parallel-allreduce',
                '--use-cpu-initialization',
                '--micro-batch-size', '1',
                '--no-load-optim',
                '--no-load-rng',
                '--no-save-optim',
                '--no-save-rng',
                '--no-initialization',
                '--mock-data', # To pass the "blend data checks" in arguments.py
                '--transformer-impl', 'transformer_engine',
                '--load', args.load_dir
                ]

    margs = parse_args()
    margs.tokenizer_model = args.tokenizer_model
    load_args_from_checkpoint(margs)

    # Arguments do sanity checks on the world size, but we don't care,
    # so trick it into thinking we are plenty of processes.
    margs.world_size = margs.tensor_model_parallel_size * margs.pipeline_model_parallel_size

    margs = validate_args(margs)

    def check_for_arg(arg_name, default=None):
        if getattr(margs, arg_name, None) is None:
            if default is not None:
                setattr(margs, arg_name, default)
            else:
                print(f"Checkpoint does not specify the argument {arg_name}. Exiting.")
                print(f"Arguments: {margs}")
                queue.put("exit")
                exit(1)

    check_for_arg('tensor_model_parallel_size')
    check_for_arg('pipeline_model_parallel_size')
    check_for_arg('num_layers')
    check_for_arg('hidden_size')
    check_for_arg('seq_length')
    check_for_arg('num_attention_heads')
    check_for_arg('max_position_embeddings')
    check_for_arg('position_embedding_type')
    check_for_arg('tokenizer_type')
    check_for_arg('iteration')
    check_for_arg('disable_bias_linear')
    check_for_arg('params_dtype')
    check_for_arg('swiglu')

    # Determine how to make our models.
    assert args.model_type == 'GPT', 'Llama-2 is a GPT model.'
    margs.model_type = ModelType.encoder_or_decoder

    # Suppress warning about torch.distributed not being initialized.
    module.MegatronModule.embedding_warning_printed = True

    set_global_variables(margs, build_tokenizer=False)
    mpu.set_tensor_model_parallel_world_size(margs.tensor_model_parallel_size)
    mpu.set_pipeline_model_parallel_world_size(margs.pipeline_model_parallel_size)
    mpu.set_virtual_pipeline_model_parallel_world_size(margs.virtual_pipeline_model_parallel_size)
    mpu.set_expert_model_parallel_world_size(margs.expert_model_parallel_size)
    fused_kernels.load(margs)

    # Metadata.
    md = types.SimpleNamespace()
    md.model_type = args.model_type
    md.num_layers = margs.num_layers
    md.hidden_size = margs.hidden_size
    md.seq_length = margs.seq_length
    md.num_attention_heads = margs.num_attention_heads
    md.max_position_embeddings = margs.max_position_embeddings
    md.tokenizer_type = margs.tokenizer_type
    md.iteration = margs.iteration
    md.params_dtype = margs.params_dtype
    md.bert_binary_head = margs.bert_binary_head
    md.output_layer = margs.untie_embeddings_and_output_weights
    md.position_embedding_type = margs.position_embedding_type
    md.linear_bias = margs.add_bias_linear
    md.norm_has_bias = False
    md.swiglu = margs.swiglu
    md.previous_tensor_parallel_size = margs.tensor_model_parallel_size
    md.previous_pipeline_parallel_size = margs.pipeline_model_parallel_size
    md.true_vocab_size = margs.vocab_size # skips padding in saver
    md.make_vocab_size_divisible_by = None
    md.checkpoint_args = margs
    md.consumed_train_samples = 0
    md.consumed_valid_samples = 0
    md.num_experts = margs.num_experts

    # Get first pipe stage.
    mpu.set_tensor_model_parallel_rank(0)
    mpu.set_pipeline_model_parallel_rank(0)
    mpu.set_expert_model_parallel_rank(0)
    model = load_checkpoint_to_model(margs)

    queue.put(md)

    def queue_put(name, msg):
        print(f"sending {name}")
        msg["name"] = name
        queue.put(msg)

    # Send embeddings.
    message = {
        "word embeddings": model.embedding.word_embeddings.weight.data
    }
    if md.position_embedding_type == 'learned_absolute':
        message["position embeddings"] = model.embedding.position_embeddings.weight.data
    else:
        assert not hasattr(model.embedding, 'position_embeddings')

    queue_put("embeddings", message)

    for layer_idx in range(margs.num_layers):
        message = {}

        # Get non-parallel tensors from tp_rank 0.
        layer = model.decoder.layers[layer_idx]
        message["input norm weight"] = layer.self_attention.linear_qkv.layer_norm_weight.data
        message["post norm weight"] = layer.pre_mlp_layernorm.weight.data

        # Simple concat of the rest.
        message["qkv weight"] = layer.self_attention.linear_qkv.weight.data
        message["dense weight"] = layer.self_attention.linear_proj.weight.data

        # Grab all parallel tensors for this layer.
        layer = model.decoder.layers[layer_idx]
        experts = layer.mlp.experts.local_experts

        message["router weight"] = layer.mlp.router.weight.data
        if md.swiglu:
            chunked_mlp_l0_weight =  [torch.chunk(local_expert.linear_fc1.weight.data, 2, dim=0) for local_expert in experts]
            message["mlp l0 weight W"] = torch.stack([local_weight[0] for local_weight in chunked_mlp_l0_weight], dim=0)
            message["mlp l0 weight V"] = torch.stack([local_weight[1] for local_weight in chunked_mlp_l0_weight], dim=0)
        else:
            message["mlp l0 weight"] = torch.stack([local_expert.linear_fc1.weight.data for local_expert in experts])
        message["mlp l1 weight"] = torch.stack([local_expert.linear_fc2.weight.data for local_expert in experts], dim=0)

        queue_put(f"transformer layer {layer_idx}", message)

    queue_put("final norm", {
        "weight": model.decoder.final_layernorm.weight.data,
    })

    if md.output_layer:
        queue_put("output layer", {
            "weight": model.output_layer.weight.data
        })

    queue.put("done")

def load_checkpoint(queue, args):
    try:
        _load_checkpoint(queue, args)
    except:
        queue.put("exit")
        raise