"test/ut/sdk/test_pruners.py" did not exist on "96207cb5b9af01e23f57a95720b3dee02c2c05b5"
test_utils.py 5.87 KB
Newer Older
hepj's avatar
hepj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import time
import urllib.request as req

import numpy as np
import pytest
import torch

import megatron.core.utils as util
from tests.unit_tests.test_utilities import Utils


def test_divide_properly():
    assert util.divide(4,2) == 2

def test_divide_improperly():
    with pytest.raises(AssertionError):
        util.divide(4,5)

def test_global_memory_buffer():
    global_memory_buffer = util.GlobalMemoryBuffer()
    obtained_tensor = global_memory_buffer.get_tensor((3,2), torch.float32, "test_tensor")
    expected_tensor = torch.empty((3,2), dtype=torch.float32, device=torch.cuda.current_device())
    assert obtained_tensor.shape == expected_tensor.shape

def test_make_viewless_tensor():
    inp = torch.rand((3,4))
    assert(torch.equal(inp, util.make_viewless_tensor(inp, True, True)))
    assert(torch.equal(inp, util.make_viewless_tensor(inp, True, False)))

def test_safely_set_viewless_tensor_data():
    tensor = torch.zeros((3,4))
    new_data_tensor = torch.tensor(np.random.rand(3,4))
    util.safely_set_viewless_tensor_data(tensor, new_data_tensor)
    assert(torch.equal(tensor, new_data_tensor))

def test_assert_viewless_tensor():
    tensor = torch.rand((3,4))
    assert(torch.equal(util.assert_viewless_tensor(tensor), tensor))
    input_tensor_list=[tensor,tensor,tensor]
    output_tensor_list = util.assert_viewless_tensor(input_tensor_list)
    for inp,out in zip(input_tensor_list, output_tensor_list):
        assert(torch.equal(inp,out))

# Initialize torch.distributed; do not call init_process_group here, call
# Utils.initialize_distributed() instead.
def _init_distributed(world, rank):
    Utils.initialize_distributed()
    assert torch.distributed.is_initialized() == True
    assert torch.distributed.get_rank() == rank
    assert torch.cuda.device_count() == world
    torch.distributed.barrier()

# Deinitialization and cleanup.
# Do not call torch.distributed.destroy_process_group, may be needed by other tests.
def _deinit_distributed():
    assert torch.distributed.is_initialized() == True
    torch.distributed.barrier()

def test_check_param_hashes_across_dp_replicas():
    world = int(os.getenv('WORLD_SIZE', '1'))
    rank = int(os.getenv('RANK', '0'))

    # Setup.
    _init_distributed(world, rank)
    Utils.initialize_model_parallel()
    model = torch.nn.Linear(100, 100, bias=False)

    # First check case where all replicas agree.
    model.weight.data.fill_(1.0)
    assert util.check_param_hashes_across_dp_replicas([model])

    # Now check case where replica 0 disagrees with all other replicas.
    if rank == 0:
        model.weight.data.fill_(0.0)
    param_hashes_match = util.check_param_hashes_across_dp_replicas([model])
    expected_param_hashes_match = (rank == 0)
    assert param_hashes_match == expected_param_hashes_match

    # Teardown.
    _deinit_distributed()


def test_straggler_detector():
    world = int(os.getenv('WORLD_SIZE', '1'))
    rank = int(os.getenv('RANK', '0'))
    master = os.getenv('MASTER_ADDR', 'localhost')
    port = 65535

    # Checks if the instance is disabled.
    def straggler_detector_disabled():
        assert stimer.enabled == False

    # Checks if the instance is enabled.
    def straggler_detector_enabled():
        assert stimer.enabled == True

    # Enable.
    def straggler_detector_enable():
        if rank == 0:
            resp = req.urlopen(f"http://{master}:{port}").read().decode().split()
            assert resp[3] == "ON"
        # Call the report function, this will propagate the change.
        stimer.report()

    # Time an operation.
    def straggler_detector_timeit():
        s = 2  # Sleep for 2 seconds.
        M = 20
        K = 30
        N = 40
        mat1 = torch.randn(M, K, device='cuda')
        mat2 = torch.randn(K, N, device='cuda')
        # batch_data.
        with stimer(bdata=True):
            time.sleep(s)
        # GEMM.
        with stimer:
            res = torch.matmul(mat1, mat2)
        delta, batch_delta, _, _, _, _, = stimer.elapsed()
        assert delta > 0.0
        assert batch_delta >= s

    # Test function to raise ValueError
    def straggler_value_error():
        raise ValueError("Exception value raised")

    # Check that exception is not suppressed.
    def straggler_detector_exception_propagate():
        # batch_data
        with pytest.raises(ZeroDivisionError):
            with stimer(bdata=True):
                x = 1 / 0
        # non-batch-data
        with pytest.raises(ValueError, match=r".* value .*"):
            with stimer():
                straggler_value_error()

    # Reporting.
    def straggler_detector_report():
        s = 2  # Sleep for 2 seconds.
        N = 20
        P = 30
        M = 40
        mat1 = torch.randn(N, P, device='cuda')
        mat2 = torch.randn(P, M, device='cuda')
        tfp = (N * M) * (2 * P - 1)  # Theoretical.
        iter = 10  # Mock.
        # batch_data.
        with stimer(bdata=True):
            time.sleep(s)
        # GEMM.
        with stimer:
            res = torch.matmul(mat1, mat2)
        r = stimer.report(total_flops=tfp, log_interval=iter)
        rb = True if rank == 0 else False
        assert r == rb

    # Start test.
    # Setup.
    _init_distributed(world, rank)

    # Create a straggler_detector with enabled set to false.
    stimer = util.StragglerDetector()
    stimer.configure(world, rank, enabled=False, port=port)
    # Check if configuration was success.
    assert stimer.configured == True

    # Check if the instance is in disabled state.
    straggler_detector_disabled()
    # Enable it now, must call report.
    straggler_detector_enable()
    # Check if all ranks have straggler detector enabled.
    straggler_detector_enabled()
    # Time some operation.
    straggler_detector_timeit()
    # Report only from rank 0.
    straggler_detector_report()
    # Check that exception is not suppressed.
    straggler_detector_exception_propagate()

    # Teardown.
    _deinit_distributed()