test_t5_model.py 3.73 KB
Newer Older
hepj's avatar
hepj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.

import pytest

import torch

from megatron.core.transformer.transformer_config import TransformerConfig
from megatron.core.models.T5.t5_model import T5Model
from tests.unit_tests.test_utilities import Utils
from megatron.core.tensor_parallel.random import model_parallel_cuda_manual_seed
from megatron.core.models.T5.t5_spec import (get_t5_encoder_with_transformer_engine_block_spec,
                                            get_t5_decoder_with_transformer_engine_block_spec,
                                            get_t5_encoder_with_local_block_spec,
                                            get_t5_decoder_with_local_block_spec)

class TestT5Model:

    def setup_method(self, method):
        Utils.initialize_model_parallel(1,1)
        model_parallel_cuda_manual_seed(123)
        transformer_config = TransformerConfig(
            num_layers=12, hidden_size=768, num_attention_heads=12, kv_channels=64, ffn_hidden_size=3072,
            use_cpu_initialization=True, pipeline_dtype=torch.bfloat16
        )
        en_block_spec = get_t5_encoder_with_transformer_engine_block_spec(12)
        de_block_spec = get_t5_decoder_with_transformer_engine_block_spec(12)
        self.t5_model = T5Model(
            encoder_config=transformer_config, config=transformer_config, transformer_encoder_layer_spec=en_block_spec,
            transformer_decoder_layer_spec=de_block_spec,  vocab_size=29184, max_sequence_length=4
        )

    def teardown_method(self, method):
        Utils.destroy_model_parallel()

    def test_constructor(self):
        assert isinstance(self.t5_model, T5Model)

        assert self.t5_model.max_sequence_length == 4

    def test_set_input_tensor(self):
        config: TransformerConfig = self.t5_model.config
        sequence_length = self.t5_model.max_sequence_length
        micro_batch_size = 2

        # [sequence length, batch size, hidden size]
        input_tensor = torch.ones((sequence_length, micro_batch_size, config.hidden_size))

        self.t5_model.set_input_tensor(input_tensor)

        assert self.t5_model.encoder.input_tensor.shape[0] == sequence_length
        assert self.t5_model.encoder.input_tensor.shape[1] == micro_batch_size
        assert self.t5_model.encoder.input_tensor.shape[2] == config.hidden_size

    def test_post_process_forward(self):
        config: TransformerConfig = self.t5_model.config
        sequence_length = self.t5_model.max_sequence_length
        micro_batch_size = 2

        self.t5_model.cuda()

        data = list(range(sequence_length))
        encoder_input_ids = torch.tensor(data, dtype=torch.int64).repeat((micro_batch_size, 1)).cuda()
        decoder_input_ids = torch.tensor(data, dtype=torch.int64).repeat((micro_batch_size, 1)).cuda()
        encoder_attn_mask = torch.ones((1, sequence_length, sequence_length), dtype=bool).cuda()
        decoder_attn_mask = torch.ones((1, sequence_length, sequence_length), dtype=bool).cuda()
        encoder_decoder_attn_mask = torch.ones((1, sequence_length, sequence_length), dtype=bool).cuda()

        logits = self.t5_model.forward(
            encoder_input_ids=encoder_input_ids,
            decoder_input_ids=decoder_input_ids,
            encoder_attn_mask=encoder_attn_mask,
            decoder_attn_mask=decoder_attn_mask,
            encoder_decoder_attn_mask=encoder_decoder_attn_mask
        )

        assert logits.shape[0] == micro_batch_size
        assert logits.shape[1] == sequence_length
        assert logits.shape[2] == self.t5_model.vocab_size

    def test_no_post_process_forward(self):
        pass

    def test_no_preprocess_forward(self):
        pass

    def test_state_dict_for_save_checkpoint(self):
        pass

    def test_load_state_dict(self):
        pass