test_serialization.py 26.7 KB
Newer Older
hepj's avatar
hepj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.

import io
import logging

import numpy as np
import pytest
import torch
from torch.distributed.checkpoint import CheckpointException as PyTCheckpointingException

from megatron.core import parallel_state
from megatron.core.dist_checkpointing import ShardedTensor, save, load
from megatron.core.dist_checkpointing.core import CheckpointingException, \
    maybe_load_config
from megatron.core.dist_checkpointing.dict_utils import diff
from megatron.core.dist_checkpointing.mapping import ShardedTensorFactory, \
    ShardedObject
from megatron.core.dist_checkpointing.serialization import \
    load_tensors_metadata, load_sharded_metadata
from megatron.core.dist_checkpointing.strategies.base import StrategyAction, \
    get_default_strategy
from megatron.core.dist_checkpointing.validation import StrictHandling

from tests.unit_tests.dist_checkpointing import TempNamedDir
from tests.unit_tests.test_utilities import Utils


class TestSerialization:
    def setup_class(cls):
        Utils.initialize_distributed()

    @pytest.fixture(scope='function', autouse=True)
    def cleanup_model_parallel(self):
        # pass for initialize
        yield
        Utils.destroy_model_parallel()

    def test_single_process_save_load(self, tmp_path_dist_ckpt):
        Utils.initialize_model_parallel(1,1)

        sharded_state_dict = {
            'sd_keyA': ShardedTensor.from_rank_offsets('keyA', torch.ones(2, 4), replica_id=Utils.rank),
            'sd_keyB': ShardedTensor.from_rank_offsets('keyB', torch.ones(3, 5, 7), replica_id=Utils.rank),
        }

        # sync=True to make sure other ranks wait for rank 0 to finish creating directory.
        with TempNamedDir(tmp_path_dist_ckpt / 'test_single_process_save_load', sync=True) as ckpt_dir:
            save(sharded_state_dict, ckpt_dir)
            torch.distributed.barrier()

            saved_config = maybe_load_config(ckpt_dir)
            if saved_config.sharded_backend == 'zarr':
                assert (ckpt_dir / 'keyA').is_dir()
                assert (ckpt_dir / 'keyB').is_dir()
                assert not (ckpt_dir / 'keyC').exists()
                assert not (ckpt_dir / 'sd_keyA').is_dir()

            load_ssd = {
                'load_sd_keyA': ShardedTensor.from_rank_offsets('keyA', torch.ones(2, 4), replica_id=Utils.rank),
            }
            loaded_state_dict = load(load_ssd, ckpt_dir)
            
            assert set(loaded_state_dict.keys()) == {'load_sd_keyA'}
            assert isinstance(loaded_state_dict['load_sd_keyA'], torch.Tensor)
            assert loaded_state_dict['load_sd_keyA'].shape == (2, 4)

        Utils.destroy_model_parallel()


    def test_multi_process_save(self, tmp_path_dist_ckpt):
        Utils.initialize_model_parallel(2,4)

        state_dict = {
            'sd_keyA': ShardedTensor.from_rank_offsets('keyA', torch.ones(2, 4), (0, Utils.rank, Utils.world_size)),
            'sd_keyB': ShardedTensor.from_rank_offsets('keyB', torch.ones(3, 5, 7), (2, Utils.rank, Utils.world_size)),
        }

        # sync=True to make sure other ranks wait for rank 0 to finish creating directory.
        with TempNamedDir(tmp_path_dist_ckpt / 'test_multi_process_save', sync=True) as ckpt_dir:
            save(state_dict, ckpt_dir)

            saved_config = maybe_load_config(ckpt_dir)
            if saved_config.sharded_backend == 'zarr':
                assert (ckpt_dir / 'keyA').is_dir()
                assert (ckpt_dir / 'keyB').is_dir()
                assert not (ckpt_dir / 'keyC').exists()
                assert not (ckpt_dir / 'sd_keyA').is_dir()

        Utils.destroy_model_parallel()


    def test_partition_change_save_load(self, tmp_path_dist_ckpt, strategy=None):
        Utils.initialize_model_parallel(2,4)

        # ten_a: global shape (2, 4):
        ten_a_global = torch.tensor([[0, 1, 2, 3], [10, 11, 12, 13]])
        ten_a = torch.zeros(1, 1) + 10 * parallel_state.get_tensor_model_parallel_rank() + parallel_state.get_pipeline_model_parallel_rank()
        assert ten_a.shape == (1, 1)

        # ten_b: global shape (4, 5, 80), where (x, y, z) is (100x + z)
        ten_b = torch.zeros(4, 5, 10) + (torch.arange(10) + 10 * Utils.rank)
        ten_b += torch.arange(4).unsqueeze(-1).unsqueeze(-1) * 100
        assert ten_b.shape == (4, 5, 10)

        state_dict = {
            'sd_keyA': ShardedTensor.from_rank_offsets('keyA', ten_a,
                                                       (0, parallel_state.get_tensor_model_parallel_rank(), parallel_state.get_tensor_model_parallel_world_size()),
                                                       (1, parallel_state.get_pipeline_model_parallel_rank(), parallel_state.get_pipeline_model_parallel_world_size()),
                                                       replica_id=0),
            'sd_keyB': ShardedTensor.from_rank_offsets('keyB', ten_b, (2, Utils.rank, Utils.world_size)),
        }

        ten_a_global_shape = ten_a_global.shape
        ten_b_global_shape = (4, 5, 10 * 8)

        assert state_dict['sd_keyA'].local_shape == (1, 1)
        assert state_dict['sd_keyA'].global_shape == ten_a_global_shape
        assert state_dict['sd_keyB'].global_shape == ten_b_global_shape

        # sync=True to make sure other ranks wait for rank 0 to finish creating directory.
        with TempNamedDir(tmp_path_dist_ckpt / 'test_partition_change_save_load', sync=True) as ckpt_dir:
            save(state_dict, ckpt_dir, strategy)

            del ten_a, ten_b

            # without changing TPxPP, load tensors without any sharding
            load_sd = {
                'sd_keyA': ShardedTensor.from_rank_offsets('keyA',
                                                           torch.empty(ten_a_global_shape),
                                                           replica_id=Utils.rank),
                'sd_keyB': ShardedTensor.from_rank_offsets('keyB',
                                                           torch.empty(ten_b_global_shape),
                                                           replica_id=Utils.rank),
            }
            loaded_state_dict = load(load_sd, ckpt_dir)

            ten_a = loaded_state_dict['sd_keyA']
            ten_b = loaded_state_dict['sd_keyB']
            assert isinstance(ten_a, torch.Tensor)
            assert ten_a.shape == ten_a_global_shape
            assert torch.all(ten_a == ten_a_global)

            assert isinstance(ten_b, torch.Tensor)
            assert ten_b.shape == ten_b_global_shape
            assert np.all([
                val == 100 * x + z
                for x, x_row in enumerate(ten_b)
                for y, y_row in enumerate(x_row)
                for z, val in enumerate(y_row)
            ])

            del ten_a, ten_b

            # change TPxPP
            Utils.destroy_model_parallel()
            Utils.initialize_model_parallel(1,2)

            load_sd = {
                'sd_keyA': ShardedTensor.from_rank_offsets('keyA', torch.empty(2, 1),
                                                           (1, parallel_state.get_data_parallel_rank(), parallel_state.get_data_parallel_world_size()),
                                                           replica_id=parallel_state.get_pipeline_model_parallel_rank()),
                'sd_keyB': ShardedTensor.from_rank_offsets('keyB', torch.empty(5, 80),
                                                           (0, Utils.rank // 2, 4),
                                                           prepend_axis_num=1,
                                                           replica_id=Utils.rank % 2),
            }

            loaded_state_dict = load(load_sd, ckpt_dir)
            ten_a = loaded_state_dict['sd_keyA']
            ten_b = loaded_state_dict['sd_keyB']

            assert isinstance(ten_a, torch.Tensor)
            assert ten_a.shape == (2, 1)
            assert torch.all(ten_a[:, 0] == ten_a_global[:, parallel_state.get_data_parallel_rank()])

            assert isinstance(ten_b, torch.Tensor)
            assert ten_b.shape == (5, 10 * 8)
            assert torch.all(ten_b == torch.arange(80).unsqueeze(0).expand(5, 80) + Utils.rank // 2 * 100)

    def test_load_tensors_metadata(self, tmp_path_dist_ckpt):
        Utils.initialize_model_parallel(2,4)

        state_dict = {
            'sd_keyA': ShardedTensor.from_rank_offsets('keyA', torch.arange(10) + Utils.rank * 10, (0, Utils.rank, Utils.world_size)),
            'sd_keyB': ShardedTensor.from_rank_offsets('keyB', torch.ones(3, 5, 7), (2, Utils.rank, Utils.world_size)),
        }

        # sync=True to make sure other ranks wait for rank 0 to finish creating directory.
        with TempNamedDir(tmp_path_dist_ckpt / 'test_load_tensors_metadata', sync=True) as ckpt_dir:
            save(state_dict, ckpt_dir)

            del state_dict
            sharded_state_dict = load_tensors_metadata(ckpt_dir)
            # loaded dict keys are ShardedTensor keys!
            assert 'keyA' in sharded_state_dict
            assert 'sd_keyA' not in sharded_state_dict

            # Check metadata
            assert sharded_state_dict['keyA'].global_shape == (10 * Utils.world_size,)
            assert sharded_state_dict['keyB'].global_shape == (3, 5, 7 * Utils.world_size)
            assert sharded_state_dict['keyA'].local_shape == sharded_state_dict['keyA'].global_shape
            assert sharded_state_dict['keyB'].local_shape == sharded_state_dict['keyB'].global_shape
            assert sharded_state_dict['keyA'].global_offset == (0,)
            assert sharded_state_dict['keyB'].global_offset == (0, 0, 0)
            assert sharded_state_dict['keyA'].axis_fragmentations == (1,)
            assert sharded_state_dict['keyB'].axis_fragmentations == (1, 1, 1)
            assert sharded_state_dict['keyA'].replica_id == 0
            assert sharded_state_dict['keyB'].replica_id == 0

            # metadata dict can be loaded. We don't validate access because there are multiple replica_id=0
            state_dict = load(sharded_state_dict, ckpt_dir, validate_access_integrity=False)
            assert torch.all(state_dict['keyA'] == torch.arange(10 * Utils.world_size))

        Utils.destroy_model_parallel()

    def test_can_mix_sharded_tensors_and_factories(self, tmp_path_dist_ckpt):
        Utils.initialize_model_parallel(1, 1)

        def _build_fn(key, tensor, replica_id, flattened_range):
            assert flattened_range is None
            return [
                ShardedTensor.from_rank_offsets(key + 'part1', tensor, replica_id=replica_id),
                ShardedTensor.from_rank_offsets(key + 'part2', tensor, replica_id=replica_id),
                ShardedTensor.from_rank_offsets(key + 'part3', tensor, replica_id=replica_id),
            ]

        # state dict can be modified by dist_checkpointing.save, so two copies
        def get_sharded_state_dict(base=0):
            return {'all': [
                ShardedTensor.from_rank_offsets('A', torch.arange(2) + base, replica_id=Utils.rank),
                ShardedTensor.from_rank_offsets('B', torch.arange(3) + base, replica_id=Utils.rank),
                ShardedTensor.from_rank_offsets('C', torch.arange(4) + base, replica_id=Utils.rank),
                ShardedTensorFactory('D', torch.arange(5) + base, _build_fn, sum, replica_id=Utils.rank),
            ]}

        # sync=True to make sure other ranks wait for rank 0 to finish creating directory.
        with TempNamedDir(tmp_path_dist_ckpt / 'test_can_mix_sharded_tensors_and_factories', sync=True) as ckpt_dir:
            save(get_sharded_state_dict(0), ckpt_dir)
            loaded_state_dict = load(get_sharded_state_dict(10), ckpt_dir)

        expected_sd = {
            'all': [
                torch.arange(2),
                torch.arange(3),
                torch.arange(4),
                torch.arange(5) * 3,  # sum of three parts, as specified in merge_fn
            ]
        }
        diffs = diff(loaded_state_dict, expected_sd)
        assert not any(map(bool, diffs)), diffs

        Utils.destroy_model_parallel()

    def test_load_error_msg(self, tmp_path_dist_ckpt):
        ckpt_dir_name = 'test_load_error_msg'
        Utils.initialize_model_parallel(1, 1)
        sh_ten = ShardedTensor.from_rank_offsets('keyA', torch.rand(10), replica_id=Utils.rank)
        state_dict = {'some_key': sh_ten}

        # Non-existent directory
        non_ex_path = f'/tmp/non-existent-path/{ckpt_dir_name}'
        with pytest.raises(CheckpointingException) as exc_info:
            load(state_dict, non_ex_path)
        assert f'directory {non_ex_path} does not exist' in str(exc_info.value)

        # sync=True to make sure other ranks wait for rank 0 to finish creating directory.
        with TempNamedDir(tmp_path_dist_ckpt / ckpt_dir_name, sync=True) as ckpt_dir:
            # Empty directory - not a distributed checkpoint
            with pytest.raises(CheckpointingException) as exc_info:
                load(state_dict, ckpt_dir)
            assert f'is not a distributed checkpoint' in str(exc_info.value)

            # Missing Zarr arrays
            torch.distributed.barrier()
            save(state_dict, ckpt_dir)
            sh_ten.key = 'different_key'
            with pytest.raises((CheckpointingException, PyTCheckpointingException)) as exc_info:
                load(state_dict, ckpt_dir)
            assert "different_key" in str(exc_info.value)

    def test_sharded_object_serialization(self, tmp_path_dist_ckpt):
        Utils.initialize_model_parallel(1, 1)
        # sync=True to make sure other ranks wait for rank 0 to finish creating directory.
        with TempNamedDir(tmp_path_dist_ckpt / 'test_sh_obj', sync=True) as ckpt_dir:
            state = {'some': 'dict'}
            state_serialized = io.BytesIO()
            torch.save(state, state_serialized)
            state_dict = {'some_key': ShardedObject('sh_obj_A', state_serialized, (1,), (0,),
                                                    replica_id=Utils.rank)}

            save(state_dict, ckpt_dir)
            del state, state_serialized, state_dict
            other_state = {'other': 'dictionary'}
            other_serialized = io.BytesIO()
            torch.save(other_state, other_serialized)
            state_dict = {'other_key': ShardedObject('sh_obj_A', other_serialized, (1,), (0,),
                                                     replica_id=Utils.rank)}
            load_state_dict = load(state_dict, ckpt_dir)
            assert 'other_key' in load_state_dict
            load_state_dict['other_key'].seek(0)
            loaded_state = torch.load(load_state_dict['other_key'])

            assert loaded_state == {'some': 'dict'}

        Utils.destroy_model_parallel()

    def test_tensor_shape_mismatch(self, tmp_path_dist_ckpt):
        Utils.initialize_model_parallel(2,4)

        # Global tensor is just a range(32) repeated twice over the first dimension
        local_tensor = torch.arange(4).unsqueeze(0).expand(2, 4) + Utils.rank * 4

        state_dict = {
            'rigid': ShardedTensor.from_rank_offsets('keyA', local_tensor, (1, Utils.rank, Utils.world_size)),
            'flexible': ShardedTensor.from_rank_offsets('keyB', local_tensor, (1, Utils.rank, Utils.world_size),
                                                        allow_shape_mismatch=True),
        }
        assert state_dict['rigid'].global_shape == (2, 32)
        assert state_dict['flexible'].global_shape == (2, 32)

        # sync=True to make sure other ranks wait for rank 0 to finish creating directory.
        with TempNamedDir(tmp_path_dist_ckpt / 'test_tensor_shape_mismatch', sync=True) as ckpt_dir:
            save(state_dict, ckpt_dir)

            pp_size = parallel_state.get_pipeline_model_parallel_world_size()
            pp_rank = parallel_state.get_pipeline_model_parallel_rank()
            tp_rank = parallel_state.get_tensor_model_parallel_rank()

            # Smaller coverage than expected (28 < 32)
            state_dict = {
                'rigid': ShardedTensor.from_rank_offsets('keyA', torch.ones(2, 7), (1, pp_rank, pp_size), replica_id=tp_rank),
            }
            with pytest.raises((CheckpointingException, PyTCheckpointingException)):
                load(state_dict, ckpt_dir)

            state_dict = {
                'flexible': ShardedTensor.from_rank_offsets('keyB', torch.ones(2, 7), (1, pp_rank, pp_size), replica_id=tp_rank,
                                                            allow_shape_mismatch=True),
            }
            loaded_state_dict = load(state_dict, ckpt_dir)
            assert torch.all(loaded_state_dict['flexible'] == torch.arange(7).unsqueeze(0).expand(2, 7) + pp_rank * 7)

            # Larger coverage than expected (36 > 32)
            state_dict = {
                'rigid': ShardedTensor.from_rank_offsets('keyA', torch.ones(2, 9), (1, pp_rank, pp_size), replica_id=tp_rank),
            }
            with pytest.raises((CheckpointingException, PyTCheckpointingException)):
                load(state_dict, ckpt_dir)

            state_dict = {
                'flexible': ShardedTensor.from_rank_offsets('keyB', torch.ones(2, 9), (1, pp_rank, pp_size), replica_id=tp_rank,
                                                            allow_shape_mismatch=True),
            }
            loaded_state_dict = load(state_dict, ckpt_dir)
            expected_tensor = torch.arange(9).unsqueeze(0).expand(2, 9) + pp_rank * 9

            if pp_rank >= (32 // 9):
                assert pp_rank == 3, pp_rank
                expected_tensor[:, 5:] = 0  # padding with 0s
            assert torch.all(loaded_state_dict['flexible'] == expected_tensor)

        Utils.destroy_model_parallel()


class TestNonStrictLoad:
    def setup_method(self, method):
        Utils.initialize_model_parallel(2, 4)  # doesn't matter for this test

    def teardown_method(self, method):
        Utils.destroy_model_parallel()

    def _get_base_state_dict(self):
        return {
            'TenA': ShardedTensor.from_rank_offsets('TenA', torch.arange(2), replica_id=Utils.rank),
            'TenB': ShardedTensor.from_rank_offsets('TenB', torch.arange(3), (0, Utils.rank, Utils.world_size), replica_id=0),
            'TenC': ShardedTensor.from_rank_offsets('TenC', torch.arange(3), replica_id=Utils.world_size - Utils.rank - 1),
            'ObjA': ShardedObject('ObjA', list(range(10)), (1,), (0,), replica_id=Utils.rank),
            'ObjB': ShardedObject('ObjB', {Utils.rank + 7}, (1, Utils.world_size), (0, Utils.rank), replica_id=0),
        }

    @pytest.mark.parametrize('validate_integrity', [True, False])
    def test_unexpected_keys_handling_during_validation(self, caplog, tmp_path_dist_ckpt, validate_integrity):
        sharded_state_dict = self._get_base_state_dict()
        with TempNamedDir(tmp_path_dist_ckpt / 'test_unexpected_keys_raises_error_during_validation') as ckpt_dir:
            save(sharded_state_dict, ckpt_dir)

            def load_with_flag(strict):
                sharded_state_dict = self._get_base_state_dict()
                sharded_state_dict['TenD'] = ShardedTensor.from_rank_offsets('UnexpectedTenD', torch.arange(3), replica_id=Utils.rank)
                sharded_state_dict['ObjD'] = ShardedTensor.from_rank_offsets('UnexpectedObjD', torch.arange(3), replica_id=Utils.rank)
                return load(sharded_state_dict, ckpt_dir, validate_access_integrity=validate_integrity, strict=strict)

            def test_error(error_msg):
                assert 'Unexpected keys' in error_msg
                assert 'UnexpectedTenD' in error_msg
                assert 'UnexpectedObjD' in error_msg
                assert 'Missing keys' not in error_msg

            # ASSUME_OK_UNEXPECTED results in an exception raised by the underlying strategy
            with pytest.raises(PyTCheckpointingException) as exc_info:
                load_with_flag(StrictHandling.ASSUME_OK_UNEXPECTED)
            # Informative exceptions with `RAISE_*` options:
            with pytest.raises(CheckpointingException) as exc_info:
                load_with_flag(StrictHandling.RAISE_UNEXPECTED)
            test_error(str(exc_info.value))
            with pytest.raises(CheckpointingException) as exc_info:
                load_with_flag(StrictHandling.RAISE_ALL)
            test_error(str(exc_info.value))

            # Logged mismatches:
            with caplog.at_level(logging.WARNING):
                loaded_state_dict = load_with_flag(StrictHandling.LOG_UNEXPECTED)
            assert 'TenA' in loaded_state_dict
            test_error(caplog.text)
            with caplog.at_level(logging.WARNING):
                loaded_state_dict = load_with_flag(StrictHandling.LOG_ALL)
            assert 'TenA' in loaded_state_dict
            test_error(caplog.text)

            # Returned mismatches
            loaded_state_dict, missing_keys, unexpected_keys = load_with_flag(StrictHandling.RETURN_UNEXPECTED)
            assert 'TenA' in loaded_state_dict
            assert unexpected_keys == {'UnexpectedTenD', 'UnexpectedObjD'}
            assert missing_keys == set()
            loaded_state_dict, missing_keys, unexpected_keys = load_with_flag(StrictHandling.RETURN_ALL)
            assert 'TenA' in loaded_state_dict
            assert unexpected_keys == {'UnexpectedTenD', 'UnexpectedObjD'}
            assert missing_keys == set()

            # Ignore mismatch
            loaded_state_dict = load_with_flag(StrictHandling.IGNORE_ALL)
            assert 'TenA' in loaded_state_dict


    @pytest.mark.parametrize('validate_integrity', [True, False])
    def test_missing_keys_raises_error_during_validation(self, caplog, tmp_path_dist_ckpt, validate_integrity):
        sharded_state_dict = self._get_base_state_dict()
        with TempNamedDir(tmp_path_dist_ckpt / 'test_missing_keys_raises_error_during_validation') as ckpt_dir:
            save(sharded_state_dict, ckpt_dir)

            def load_with_flag(strict):
                sharded_state_dict = self._get_base_state_dict()
                del sharded_state_dict['TenA']
                del sharded_state_dict['ObjB']
                return load(sharded_state_dict, ckpt_dir, validate_access_integrity=validate_integrity, strict=strict)

            def test_error(error_msg):
                assert 'Unexpected keys' not in error_msg
                assert 'TenA' in error_msg
                assert 'ObjB' in error_msg
                assert 'Missing keys' in error_msg

            # no mismatch for `*_UNEXPECTED` flag
            loaded_state_dict = load_with_flag(StrictHandling.ASSUME_OK_UNEXPECTED)
            assert 'TenB' in loaded_state_dict

            loaded_state_dict = load_with_flag(StrictHandling.RAISE_UNEXPECTED)
            assert 'TenB' in loaded_state_dict

            with caplog.at_level(logging.WARNING):
                loaded_state_dict = load_with_flag(StrictHandling.LOG_UNEXPECTED)
            assert caplog.text == ''
            assert 'TenB' in loaded_state_dict

            loaded_state_dict, missing_keys, unexpected_keys = load_with_flag(StrictHandling.RETURN_UNEXPECTED)
            assert 'TenB' in loaded_state_dict
            assert missing_keys == set()
            assert unexpected_keys == set()

            loaded_state_dict = load_with_flag(StrictHandling.IGNORE_ALL)
            assert 'TenB' in loaded_state_dict

            # Informative exceptions with `RAISE_ALL` option:
            with pytest.raises(CheckpointingException) as exc_info:
                load_with_flag(StrictHandling.RAISE_ALL)
            test_error(str(exc_info.value))

            # Logged mismatches:
            with caplog.at_level(logging.WARNING):
                loaded_state_dict = load_with_flag(StrictHandling.LOG_ALL)
            assert 'TenB' in loaded_state_dict
            test_error(caplog.text)

            # Returned mismatches
            loaded_state_dict, missing_keys, unexpected_keys = load_with_flag(StrictHandling.RETURN_ALL)
            assert 'TenB' in loaded_state_dict
            assert unexpected_keys == set()
            assert missing_keys == {'TenA', 'ObjB'}

    @pytest.mark.parametrize('validate_integrity', [True, False])
    def test_exact_load_handling(self, caplog, tmp_path_dist_ckpt, validate_integrity):
        sharded_state_dict = self._get_base_state_dict()
        with TempNamedDir(tmp_path_dist_ckpt / 'test_exact_load_handling') as ckpt_dir:
            save(sharded_state_dict, ckpt_dir)

            def load_with_flag(strict):
                sharded_state_dict = self._get_base_state_dict()
                return load(sharded_state_dict, ckpt_dir, validate_access_integrity=validate_integrity, strict=strict)

            for strict in (
                StrictHandling.ASSUME_OK_UNEXPECTED,
                StrictHandling.LOG_UNEXPECTED,
                StrictHandling.LOG_ALL,
                StrictHandling.RAISE_UNEXPECTED,
                StrictHandling.RAISE_ALL,
                StrictHandling.IGNORE_ALL,
            ):
                with caplog.at_level(logging.WARNING):
                    loaded_state_dict = load_with_flag(strict)
                assert caplog.text == ''
                assert 'TenB' in loaded_state_dict
                assert 'ObjB' in loaded_state_dict

            for strict in (
                StrictHandling.RETURN_UNEXPECTED,
                StrictHandling.RETURN_ALL,
            ):
                with caplog.at_level(logging.WARNING):
                    loaded_state_dict, missing_keys, unexpected_keys = load_with_flag(strict)
                assert caplog.text == ''
                assert 'TenB' in loaded_state_dict
                assert 'ObjB' in loaded_state_dict
                assert missing_keys == set()
                assert unexpected_keys == set()

    @pytest.mark.parametrize('save_format', ['zarr', 'torch_dist'])
    def test_sharded_metadata(self, tmp_path_dist_ckpt, save_format):

        sharded_state_dict = self._get_base_state_dict()
        with TempNamedDir(tmp_path_dist_ckpt / 'test_exact_load_handling') as ckpt_dir:
            save_strategy = get_default_strategy(StrategyAction.SAVE_SHARDED, save_format, 1)
            save(sharded_state_dict, ckpt_dir, save_strategy)
            torch.distributed.barrier()
            sharded_metadata = load_sharded_metadata(ckpt_dir)
            assert set(sh_base.key for sh_base in sharded_metadata.values()) == {'TenA', 'TenB', 'TenC', 'ObjA', 'ObjB'}
            assert set(sharded_metadata.keys()) == {
                'TenA', 'TenB', 'TenC',
                'ObjA/shard_0_1',
                *(f'ObjB/shard_0.{i}_1.8' for i in range(8)),
            }

            loaded_state_dict = load(sharded_metadata, ckpt_dir, validate_access_integrity=False)

            assert loaded_state_dict['ObjA/shard_0_1'] == list(range(10))
            for shard_idx in range(8):
                assert loaded_state_dict[f'ObjB/shard_0.{shard_idx}_1.8'] == {shard_idx + 7}
            assert torch.all(loaded_state_dict['TenA'] == torch.arange(2))
            assert torch.all(loaded_state_dict['TenB'] == torch.arange(3).repeat(8))
            assert torch.all(loaded_state_dict['TenC'] == torch.arange(3))