"backend/apps/vscode:/vscode.git/clone" did not exist on "bd3b5f1edb302469fb7f83e777dd2b04e9936e62"
train.py 4.49 KB
Newer Older
hepj's avatar
hepj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import argparse
from copy import deepcopy

import numpy as np
from datasets import ClassLabel, load_dataset
from evaluate import load
from transformers import (AutoModelForSequenceClassification, AutoTokenizer,
                          DataCollatorWithPadding, Trainer, TrainerCallback,
                          TrainingArguments, set_seed)


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model_ckpt", type=str, default="microsoft/unixcoder-base-nine"
    )
    parser.add_argument("--max_length", type=int, default=1024)
    parser.add_argument("--num_epochs", type=int, default=5)
    parser.add_argument("--batch_size", type=int, default=6)
    parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
    parser.add_argument("--freeze", type=bool, default=True)
    parser.add_argument("--learning_rate", type=float, default=5e-4)
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--lr_scheduler_type", type=str, default="cosine")
    parser.add_argument("--num_warmup_steps", type=int, default=10)
    parser.add_argument("--weight_decay", type=float, default=0.01)
    parser.add_argument("--output_dir", type=str, default="./results")
    parser.add_argument("--push_to_hub", type=bool, default=False)
    parser.add_argument("--model_hub_name", type=str, default="codedefect_model")
    return parser.parse_args()


metric = load("accuracy")


def compute_metrics(eval_pred):
    predictions, labels = eval_pred
    predictions = np.argmax(predictions, axis=1)
    return metric.compute(predictions=predictions, references=labels)


class CustomCallback(TrainerCallback):
    def __init__(self, trainer) -> None:
        super().__init__()
        self._trainer = trainer

    def on_epoch_end(self, args, state, control, **kwargs):
        if control.should_evaluate:
            control_copy = deepcopy(control)
            self._trainer.evaluate(
                eval_dataset=self._trainer.train_dataset, metric_key_prefix="train"
            )
            return control_copy


def main():
    args = get_args()
    set_seed(args.seed)

    ds = load_dataset("code_x_glue_cc_defect_detection")
    labels = ClassLabel(num_classes=2, names=[True, False])
    ds = ds.cast_column("target", labels)
    ds = ds.rename_column("target", "label")

    print("Loading tokenizer and model")
    tokenizer = AutoTokenizer.from_pretrained(args.model_ckpt)
    tokenizer.pad_token = tokenizer.eos_token
    model = AutoModelForSequenceClassification.from_pretrained(
        args.model_ckpt, num_labels=2
    )
    model.config.pad_token_id = model.config.eos_token_id

    if args.freeze:
        for param in model.roberta.parameters():
            param.requires_grad = False

    def tokenize(example):
        inputs = tokenizer(example["func"], truncation=True, max_length=args.max_length)
        return {
            "input_ids": inputs["input_ids"],
            "attention_mask": inputs["attention_mask"],
            "label": example["target"],
        }

    tokenized_datasets = ds.map(
        tokenize,
        batched=True,
        remove_columns=["id", "func", "project", "commit_id"],
    )
    data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

    training_args = TrainingArguments(
        output_dir=args.output_dir,
        learning_rate=args.learning_rate,
        lr_scheduler_type=args.lr_scheduler_type,
        evaluation_strategy="epoch",
        save_strategy="epoch",
        logging_strategy="epoch",
        per_device_train_batch_size=args.batch_size,
        per_device_eval_batch_size=args.batch_size,
        num_train_epochs=args.num_epochs,
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        weight_decay=args.weight_decay,
        metric_for_best_model="accuracy",
        run_name="code-defect-c",
        report_to="wandb",
    )

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=tokenized_datasets["train"],
        eval_dataset=tokenized_datasets["validation"],
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics,
    )

    print("Training...")
    trainer.add_callback(CustomCallback(trainer))
    trainer.train()

    result = trainer.evaluate(eval_dataset=tokenized_datasets["test"])
    print(f"Evaluation accuracy on the test set: {result['eval_accuracy']}")

    # push the model to the Hugging Face hub
    if args.push_to_hub:
        model.push_to_hub(args.model_hub_name)


if __name__ == "__main__":
    main()