backward.cc 15.9 KB
Newer Older
yuguo960516yuguo's avatar
yuguo960516yuguo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/backward.h"

#include "paddle/fluid/eager/general_grad.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"

namespace egr {

std::unordered_map<GradNodeBase*, int> getInDegreeMap(
    const std::deque<GradNodeBase*>& init_queue) {
  // Calculate in_degree for each node
  // We can completely remove this pass, if in_degree were set during forward
  // pass
  std::unordered_map<GradNodeBase*, int> node_in_degree_map;

  // Copy nodes
  std::deque<GradNodeBase*> queue = init_queue;
  std::unordered_set<GradNodeBase*> visited;

  // Visit each node exactly once in any order
  while (!queue.empty()) {
    GradNodeBase* node = queue.front();
    queue.pop_front();

    if (visited.count(node)) {
      continue;
    }
    visited.insert(node);

    PADDLE_ENFORCE_NOT_NULL(
        node,
        paddle::platform::errors::Fatal(
            "We got null node when we traverse the backward graph, and this "
            "should not happened please check your code and contact us."));
    // Find and append next nodes
    const paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
        metas = node->OutputMeta();
    for (const auto& meta_list : metas) {
      for (const GradSlotMeta& meta : meta_list) {
        const auto& edge = meta.GetEdge();
        GradNodeBase* next_node = edge.GetMutableGradNode().get();
        // Next node could be nullptr if it is leaf tensor with no
        // AccumulationNode attached
        // Or it could also originated from dispensable inputs
        if (!next_node) continue;

        // Update in_degree
        if (!node_in_degree_map.count(next_node))
          node_in_degree_map[next_node] = 0;
        node_in_degree_map[next_node]++;
        queue.push_back(next_node);
      }
    }
  }

  return node_in_degree_map;
}

// Enforce GradNode has TensorWrappers as Input
void EnforceGradNodeHasInput(GradNodeBase* node) {
  PADDLE_ENFORCE_NE(
      node->IsTensorWrappersCleared(),
      true,
      paddle::platform::errors::Fatal(
          "The TensorWrappers of %s do not exist. This may be because:\n"
          "You calculate backward twice for the same subgraph without "
          "setting retain_graph=True. Please set retain_graph=True in the "
          "first backward/grad call.\n",
          node->name()));
}

void DuplicateCheck(const std::vector<paddle::experimental::Tensor>& inputs,
                    bool is_input) {
  std::unordered_set<AutogradMeta*> visisted_ins;
  std::string msg = is_input ? "inputs" : "outputs";
  for (auto in : inputs) {
    AutogradMeta* auto_grad_meta = EagerUtils::unsafe_autograd_meta(in);
    PADDLE_ENFORCE_EQ(
        visisted_ins.count(auto_grad_meta),
        0,
        paddle::platform::errors::AlreadyExists(
            "%s contain duplicate tensor %s, please check %s carefully.",
            msg,
            in.name(),
            msg));
    visisted_ins.insert(auto_grad_meta);
  }
}

GeneralGrad* GeneralGrad::general_grad_ = new GeneralGrad();

std::vector<paddle::experimental::Tensor> RunBackward(
    const std::vector<paddle::experimental::Tensor>& tensors,  // output
    const std::vector<paddle::experimental::Tensor>& grad_tensors,
    bool retain_graph,
    bool create_graph = false,
    const std::vector<paddle::experimental::Tensor>& inputs = {},
    bool allow_unused = false,
    const std::vector<paddle::experimental::Tensor>& no_grad_vars = {}) {
  VLOG(3) << "Start Backward";

  // *Gradient Hook should happen at node-level
  // *Inplace version check should perform at node-level
  // *Cross-batch accumulation happens at forward pass

  // GeneralGrad
  bool is_general_grad = !inputs.empty();
  if (is_general_grad) GeneralGrad::Instance().Clear();

  /* --- Initialization --- */
  // 1. Init queue with starting nodes
  // 2. Prepare initial input buffers
  std::deque<GradNodeBase*> queue;
  std::deque<GradNodeBase*> orig_queue;
  std::unordered_map<GradNodeBase*, std::unique_ptr<GradTensorHolder>>
      node_input_buffers_dict;
  for (size_t i = 0; i < tensors.size(); i++) {
    const paddle::experimental::Tensor& tensor = tensors[i];

    AutogradMeta* auto_grad_meta = EagerUtils::nullable_autograd_meta(tensor);
    if (auto_grad_meta == nullptr) {
      VLOG(5) << "Skip auto grad since there is no grad op for var or loss is "
                 "stop_gradient=True: "
              << tensor.name();
      continue;
    }
    // Get grad input info from target tensors
    auto input_info = auto_grad_meta->OutRankInfo();

    VLOG(5) << "Out Rank of Tensor is slot: " << input_info.first
            << ", rank: " << input_info.second;
    // Get target GradNodeBase from target tensors
    auto shared_grad_node = auto_grad_meta->GetMutableGradNode();

    if (shared_grad_node == nullptr || shared_grad_node.get() == nullptr ||
        auto_grad_meta->StopGradient()) {
      VLOG(5) << "Skip auto grad since there is no grad op for var or loss is "
                 "stop_gradient=True: "
              << tensor.name();
      continue;
    }

    // TODO(zhanlve): Copy and Modify GradNode if is_general_grad
    GradNodeBase* grad_node = shared_grad_node.get();
    if (is_general_grad) {
      // Save orig grad node
      orig_queue.push_back(grad_node);

      // Replace grad_node with copied grad_node
      grad_node = GeneralGrad::Instance().CopyGradNode(shared_grad_node);

      // Record potential startup grad node
      GeneralGrad::Instance().GetPotentialStartupNodes()->insert(grad_node);
    }

    // Prepare GradTensorHolder
    if (!node_input_buffers_dict.count(grad_node)) {
      VLOG(5) << "Create Value for grad input tensor " << i
              << " of grad node: " << grad_node->name();
      node_input_buffers_dict[grad_node] =
          std::make_unique<GradTensorHolder>(grad_node->InputMeta());
    }
    bool copy_from_grad_t =
        grad_tensors.size() > 0 && grad_tensors[i].initialized();
    if (copy_from_grad_t) {
      PADDLE_ENFORCE(
          grad_tensors.size() == tensors.size(),
          paddle::platform::errors::Fatal(
              "Detected size mismatch between tensors and grad_tensors"
              "grad_tensors should either have "
              "size = 0 or same size as tensors."));
      // Feed given tensor if it's provided
      VLOG(3) << "Fill grad input tensor " << i << "with give grad tensor";

      // Deep copy
      node_input_buffers_dict[grad_node]->CopyValueFromTensor(
          input_info.first, input_info.second, grad_tensors[i]);
    } else {
      VLOG(3) << "Fill grad input tensor " << i << " with 1.0";
      // Initialize tensor with 1.0
      // Forward Tensor "tensor" is passed to indicate tensortype, datatype and
      // dims
      // GradTensorHolder will initialize another tensor with same tensortype,
      // datatype and dims but filled with 1.0
      node_input_buffers_dict[grad_node]->CopyValueFromTensor(
          input_info.first, input_info.second, tensor, /*fill_one=*/true);
    }

    // Prepare queue, potential startup_nodes
    queue.push_back(grad_node);
  }

  if (is_general_grad) {
    // Prepare several vital preprocess for GeneralGrad
    GeneralGrad::Instance().PreparedForGeneralGrad(
        inputs, no_grad_vars, orig_queue, &queue, node_input_buffers_dict);
  }

  VLOG(5) << "Update In degree Map for backward";
  // 3. Compute in_degree for each node
  std::unordered_map<GradNodeBase*, int> node_in_degree_map =
      getInDegreeMap(queue);

  VLOG(5) << "Startup_ops's size is " << queue.size();

  /* --- Topological Visit --- */
  // 1. Pop queue
  // 2. Run node
  //    |- Check and capture target result
  //    |- node(grads)
  //    |- Prepare for next node
  // 3. Update queue
  while (!queue.empty()) {
    GradNodeBase* node = queue.front();
    VLOG(3) << "Preparing GradNode:" << node->name() << " addr:" << node;
    paddle::platform::RecordEvent node_record_event(
        std::string((*node).name()),
        paddle::platform::TracerEventType::Operator,
        1);

    if (queue.size() > 1 && node_in_degree_map[node] != 0) {
      queue.pop_front();
      continue;
    }
    queue.pop_front();

    // Run node: This is where Hook happens
    auto node_input_buffer_iter = node_input_buffers_dict.find(node);
    PADDLE_ENFORCE_NE(
        node_input_buffer_iter,
        node_input_buffers_dict.end(),
        paddle::platform::errors::Fatal(
            "Unable to find next node in the GradTensorHolder \n"
            "Trying to run Node without configuring its GradTensorHolder."));

    std::unique_ptr<GradTensorHolder> node_input_buffer =
        std::move(node_input_buffer_iter->second);

    // Check input
    EnforceGradNodeHasInput(node);

    VLOG(7) << "Run Backward Kernel with GradTensorHolder.";
    // Run Pre Backward Node and get outputs
    paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                         kSlotSmallVectorSize>
        grad_output_tensors = (*node)(
            node_input_buffer->Buffers(), create_graph, is_general_grad);

    if (!inputs.empty() && is_general_grad) {
      GeneralGrad::Instance().SetResultForEnddingNodes(grad_output_tensors,
                                                       node);
    }

    // retain_grad or not
    if (!retain_graph) {
      VLOG(3)
          << "retain_graph is false, need to clear the TensorWrapper of nodes.";
      node->ClearTensorWrappers();
    }

    // TODO(jiabin): Should we erase it or find a more efficient way.
    node_input_buffers_dict.erase(node_input_buffer_iter);

    // Prepare GradTensorHolder for next node
    const paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
        metas = node->OutputMeta();
    PADDLE_ENFORCE(metas.size() == grad_output_tensors.size() || metas.empty(),
                   paddle::platform::errors::Fatal(
                       "Number of edges should be either empty ( for leaf node "
                       ") or the same as number of output grad tensors, but we "
                       "got edges size is: %d, grad_output size is: %d",
                       metas.size(),
                       grad_output_tensors.size()));

    for (size_t i = 0; i < metas.size(); i++) {
      for (size_t j = 0; j < metas[i].size(); j++) {
        const Edge& edge = metas[i][j].GetEdge();
        if (!edge.IsInitialized()) {
          continue;
        }
        auto edge_rank = edge.GetEdgeRankInfo();
        // Since we make edge has as same rank as bwd outputs, we indexing them
        // with the same rank(i, j)
        auto next_node_shared = edge.GetMutableGradNode();
        VLOG(3) << "Node: " << node->name() << " addr:" << node
                << ", Found pending node: " << next_node_shared->name()
                << " addr: " << next_node_shared.get();
        // Next node could be nullptr if it is leaf tensor with no
        // AccumulationNode attached
        // Or it could also originated from dispensable inputs
        if (!next_node_shared || !next_node_shared.get() ||
            grad_output_tensors[i].empty()) {
          continue;
        }

        PADDLE_ENFORCE_LT(
            j,
            grad_output_tensors[i].size(),
            paddle::platform::errors::Fatal(
                "Rank of grad_output_tensors should be less than "
                "grad_output_tensors[i].size(), which is: %d. This error may "
                "indicate autoprune or autograd api error. ",
                grad_output_tensors.size()));
        paddle::experimental::Tensor& grad_output_tensor =
            grad_output_tensors[i][j];

        if ((!grad_output_tensor.defined() ||
             !grad_output_tensor.initialized())) {
          VLOG(7) << "We get grad_output_tensor with slot: " << i
                  << ", rank: " << j << " as uninitialized or undefined tensor";
        }

        VLOG(7) << "Get Edge and grad_output_tensor with slot: " << i
                << ", rank: " << j
                << " 's name is: " << grad_output_tensor.name();

        auto* next_node = next_node_shared.get();
        if (!node_input_buffers_dict.count(next_node)) {
          const auto& input_meta = next_node->InputMeta();
          auto grad_tensor_holder =
              std::make_unique<GradTensorHolder>(input_meta);
          VLOG(7) << "Construct GradTensorHolder for grad node: "
                  << next_node->name();
          node_input_buffers_dict[next_node] = std::move(grad_tensor_holder);
        }

        VLOG(3) << "Sum or Move grad inputs for edge slot: " << edge_rank.first
                << ", rank: " << edge_rank.second;

        node_input_buffers_dict[next_node]->add(edge_rank.first,
                                                edge_rank.second,
                                                grad_output_tensor,
                                                create_graph);

        // Update queue
        node_in_degree_map[next_node]--;
        VLOG(7) << next_node->name()
                << " ref_cnt is: " << node_in_degree_map[next_node];

        PADDLE_ENFORCE(
            node_in_degree_map[next_node] >= 0,
            paddle::platform::errors::Fatal(
                "Detected in-degree value smaller than zero. For Node: %s"
                "Node's in-degree cannot be negative.",
                next_node->name()));

        if (is_general_grad) {
          if (node_in_degree_map[next_node] == 0 &&
              GeneralGrad::Instance().IsNeededNodes(next_node)) {
            if (dynamic_cast<egr::GradNodeAccumulation*>(next_node)) {
              queue.push_front(std::move(next_node));
            } else {
              queue.push_back(std::move(next_node));
            }
          }
        } else {
          if (node_in_degree_map[next_node] == 0) {
            if (dynamic_cast<egr::GradNodeAccumulation*>(next_node)) {
              queue.push_front(std::move(next_node));
            } else {
              queue.push_back(std::move(next_node));
            }
          }
        }
      }
    }
  }

  VLOG(7) << "Run Backward Final hook size: "
          << egr::Controller::Instance().FinalBackwardHooks().size();
  for (auto& hook : egr::Controller::Instance().FinalBackwardHooks()) {
    (*hook)();
  }
  egr::Controller::Instance().ClearFinalBackwardHooks();
  if (!is_general_grad) return {};
  VLOG(3) << "Finish Backward";
  return GeneralGrad::Instance().GetResults(inputs, allow_unused, create_graph);
}

void Backward(
    const std::vector<paddle::experimental::Tensor>& tensors,  // outputs
    const std::vector<paddle::experimental::Tensor>& grad_tensors,
    bool retain_graph) {
  VLOG(3) << "Run in Backward";
  paddle::platform::RecordEvent backward_record_event(
      "backward", paddle::platform::TracerEventType::UserDefined, 1);
  RunBackward(tensors, grad_tensors, retain_graph);
  phi::autotune::AutoTuneStatus::Instance().Update();
}

std::vector<paddle::experimental::Tensor> Grad(
    const std::vector<paddle::experimental::Tensor>& tensors,  // outputs
    const std::vector<paddle::experimental::Tensor>& inputs,
    const std::vector<paddle::experimental::Tensor>& grad_tensors,
    bool retain_graph,
    bool create_graph,
    bool only_inputs,
    bool allow_unused,
    const std::vector<paddle::experimental::Tensor>& no_grad_vars) {
  VLOG(3) << "Run in Grad";

  DuplicateCheck(inputs, true /* is_input */);
  DuplicateCheck(tensors, false /* is_input */);

  return RunBackward(tensors,
                     grad_tensors,
                     retain_graph,
                     create_graph,
                     inputs,
                     allow_unused,
                     no_grad_vars);
}
}  // namespace egr