batch_norm_kernel.cu 50.7 KB
Newer Older
yuguo960516yuguo's avatar
yuguo960516yuguo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

“yuguo”'s avatar
2.5  
“yuguo” committed
23
24
#include "glog/logging.h"

yuguo960516yuguo's avatar
yuguo960516yuguo committed
25
#include "paddle/phi/backends/gpu/gpu_context.h"
“yuguo”'s avatar
2.5  
“yuguo” committed
26
27
28
29
#include "paddle/phi/backends/gpu/gpu_dnn.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/flags.h"
yuguo960516yuguo's avatar
yuguo960516yuguo committed
30
31
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/batch_norm_kernel.h"
yuguo-Jack's avatar
yuguo-Jack committed
32
#include "paddle/phi/kernels/full_kernel.h"
“yuguo”'s avatar
2.5  
“yuguo” committed
33
#include "paddle/phi/kernels/funcs/batch_norm_utils.h"
yuguo960516yuguo's avatar
yuguo960516yuguo committed
34
#include "paddle/phi/kernels/funcs/eigen/common.h"
“yuguo”'s avatar
2.5  
“yuguo” committed
35
#include "paddle/phi/kernels/funcs/norm_utils.cu.h"
yuguo960516yuguo's avatar
yuguo960516yuguo committed
36
37
38
39
40
41
42
43
44
#include "paddle/phi/kernels/funcs/norm_utils.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"

#ifdef __HIPCC__
#define LAUNCH_BOUNDS(BlockDim) __launch_bounds__(BlockDim)
#else
#define LAUNCH_BOUNDS(BlockDim)
#endif

yuguo-Jack's avatar
yuguo-Jack committed
45
PD_DECLARE_bool(cudnn_batchnorm_spatial_persistent);
yuguo960516yuguo's avatar
yuguo960516yuguo committed
46
47
48
49

namespace phi {

template <typename T>
“yuguo”'s avatar
2.5  
“yuguo” committed
50
using CudnnDataType = phi::backends::gpu::CudnnDataType<T>;
yuguo960516yuguo's avatar
yuguo960516yuguo committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
template <typename T>
using BatchNormParamType = typename CudnnDataType<T>::BatchNormParamType;

template <typename T, phi::DataLayout layout>
static __global__ void BNForwardInference(const T *x,
                                          const BatchNormParamType<T> *mean,
                                          const BatchNormParamType<T> *variance,
                                          const BatchNormParamType<T> *scale,
                                          const BatchNormParamType<T> *bias,
                                          const int C,
                                          const int N,
                                          const int HxW,
                                          const double epsilon,
                                          T *y) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  int num = N * C * HxW;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == phi::DataLayout::kNCHW ? i / HxW % C : i % C;
    BatchNormParamType<T> x_sub_mean =
        static_cast<BatchNormParamType<T>>(x[i]) - mean[c];
    BatchNormParamType<T> inv_var = 1 / sqrt(variance[c] + epsilon);
    y[i] = static_cast<T>(scale[c] * x_sub_mean * inv_var + bias[c]);
  }
}

yuguo960516yuguo's avatar
2.4.2  
yuguo960516yuguo committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
template <typename T>
static __global__ void InverseVariance(const BatchNormParamType<T> *variance,
                                       const double epsilon,
                                       const int C,
                                       BatchNormParamType<T> *inv_variance) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  if (tid < C) {
    inv_variance[tid] = 1 / sqrt(variance[tid] + epsilon);
  }
}

template <typename T, phi::DataLayout layout>
static __global__ void BN1DForwardInference(
    const T *x,
    const BatchNormParamType<T> *mean,
    const BatchNormParamType<T> *inv_variance,
    const BatchNormParamType<T> *scale,
    const BatchNormParamType<T> *bias,
    const int C,
    const int N,
    const int HxW,
    const double epsilon,
    T *y) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  int num = N * C * HxW;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == phi::DataLayout::kNCHW ? i / HxW % C : i % C;
    BatchNormParamType<T> x_sub_mean =
        static_cast<BatchNormParamType<T>>(x[i]) - mean[c];
    y[i] = static_cast<T>(scale[c] * x_sub_mean * inv_variance[c] + bias[c]);
  }
}

yuguo960516yuguo's avatar
yuguo960516yuguo committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
template <typename T, int BlockDim, phi::DataLayout layout>
static __global__ LAUNCH_BOUNDS(BlockDim) void BNForwardTraining(
    const T *x,
    const BatchNormParamType<T> *scale,
    const BatchNormParamType<T> *bias,
    const int C,
    const int N,
    const int HxW,
    const double epsilon,
    double exponentialAverageFactor,
    T *y,
    BatchNormParamType<T> *mean,
    BatchNormParamType<T> *variance,
    BatchNormParamType<T> *save_mean,
    BatchNormParamType<T> *save_inv_variance) {
  int outer_size = C;
  int inner_size = N * HxW;
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage mean_storage;
  __shared__ typename BlockReduce::TempStorage variance_storeage;
  __shared__ BatchNormParamType<T> mean_val;
  __shared__ BatchNormParamType<T> variance_val;
  __shared__ BatchNormParamType<T> inv_var_val;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    BatchNormParamType<T> x_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> x_square_sum = static_cast<BatchNormParamType<T>>(0);

    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == phi::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      BatchNormParamType<T> x_i = static_cast<BatchNormParamType<T>>(x[index]);
      x_sum += x_i;
      x_square_sum += x_i * x_i;
    }
    x_sum = BlockReduce(mean_storage).Reduce(x_sum, cub::Sum());
    x_square_sum =
        BlockReduce(variance_storeage).Reduce(x_square_sum, cub::Sum());
    if (threadIdx.x == 0) {
      mean_val = x_sum / inner_size;
      variance_val = x_square_sum / inner_size - mean_val * mean_val;
      inv_var_val = 1 / sqrt(variance_val + epsilon);

      if (save_mean && save_inv_variance) {
        save_mean[i] = mean_val;
        save_inv_variance[i] = inv_var_val;
      }
      mean[i] = (1 - exponentialAverageFactor) * mean_val +
                exponentialAverageFactor * mean[i];
      variance[i] = (1 - exponentialAverageFactor) * variance_val +
                    exponentialAverageFactor * variance[i];
    }
    __syncthreads();

    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == phi::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      BatchNormParamType<T> x_sub_mean =
          static_cast<BatchNormParamType<T>>(x[index]) - mean_val;
      y[index] = scale[i] * x_sub_mean * inv_var_val + bias[i];
    }
  }
}

template <typename T>
__device__ __forceinline__ void merge_block_horizonal(
    BatchNormParamType<T> x_sum,
    BatchNormParamType<T> x_square_sum,
    BatchNormParamType<T> *smem_sum,
    BatchNormParamType<T> *smem_square_sum,
    BatchNormParamType<T> *x_sum_out,
    BatchNormParamType<T> *x_square_sum_out) {
  int tid = threadIdx.x + threadIdx.y * blockDim.x;
#pragma unroll
  for (int offset = blockDim.x / 2; offset > 0; offset >>= 1) {
    if (threadIdx.x < offset * 2) {
      smem_sum[tid] = x_sum;
      smem_square_sum[tid] = x_square_sum;
    }
    __syncthreads();
    if (threadIdx.x < offset) {
      int pair_tid = tid + offset;
      x_sum += smem_sum[pair_tid];
      x_square_sum += smem_square_sum[pair_tid];
    }
  }
  if (threadIdx.x == 0) {
    *x_sum_out = x_sum;
    *x_square_sum_out = x_square_sum;
  }
}

template <typename T, int BlockDim>
static __global__ void BNForwardTraining2DChannelLastCompStat(
    const T *x,
    const BatchNormParamType<T> *scale,
    const BatchNormParamType<T> *bias,
    const int C,
    const int N,
    const int HxW,
    const double epsilon,
    double exponentialAverageFactor,
    T *y,
    BatchNormParamType<T> *global_mean,
    BatchNormParamType<T> *global_variance,
    BatchNormParamType<T> *save_mean,
    BatchNormParamType<T> *save_inv_variance,
    BatchNormParamType<T> *compute_mean,
    BatchNormParamType<T> *compute_inv_var,
    BatchNormParamType<T> *block_data_ptr,
    int *flag_ptr) {
  int outer_size = C;
  int inner_size = N * HxW;

  __shared__ BatchNormParamType<T> smem_sum[BlockDim];
  __shared__ BatchNormParamType<T> smem_square_sum[BlockDim];

  int outer_loop_stride = gridDim.x * blockDim.x;
  int inner_loop_stride = gridDim.y * blockDim.y;

  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < outer_size;
       i += outer_loop_stride) {
    BatchNormParamType<T> x_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> x_square_sum = static_cast<BatchNormParamType<T>>(0);

    for (int j = blockIdx.y * blockDim.y + threadIdx.y; j < inner_size;
         j += inner_loop_stride) {
      const int index = j * outer_size + i;
      BatchNormParamType<T> x_i = static_cast<BatchNormParamType<T>>(x[index]);
      x_sum += x_i;
      x_square_sum += x_i * x_i;
    }

    // vertical block sum
“yuguo”'s avatar
2.5  
“yuguo” committed
247
248
249
250
251
252
    funcs::BlockReduceByVetical<T, BatchNormParamType<T>>(x_sum,
                                                          x_square_sum,
                                                          &smem_sum[0],
                                                          &smem_square_sum[0],
                                                          &x_sum,
                                                          &x_square_sum);
yuguo960516yuguo's avatar
yuguo960516yuguo committed
253
254
255

    if (gridDim.y > 1) {
      __shared__ bool is_last_block_done;
“yuguo”'s avatar
2.5  
“yuguo” committed
256
257
258
259
260
261
262
263
264
      funcs::ReduceSumPost<T, BatchNormParamType<T>>(C,
                                                     i,
                                                     &x_sum,
                                                     &x_square_sum,
                                                     &is_last_block_done,
                                                     smem_sum,
                                                     smem_square_sum,
                                                     block_data_ptr,
                                                     flag_ptr);
yuguo960516yuguo's avatar
yuguo960516yuguo committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

      if (is_last_block_done) {
        // final compute
        if (threadIdx.y == 0) {
          BatchNormParamType<T> compute_mean_val = x_sum / inner_size;
          BatchNormParamType<T> variance_val =
              x_square_sum / inner_size - compute_mean_val * compute_mean_val;
          BatchNormParamType<T> compute_inv_var_val =
              1 / sqrt(variance_val + epsilon);

          if (save_mean && save_inv_variance) {
            save_mean[i] = compute_mean_val;
            save_inv_variance[i] = compute_inv_var_val;
          }
          global_mean[i] = (1 - exponentialAverageFactor) * compute_mean_val +
                           exponentialAverageFactor * global_mean[i];
          global_variance[i] = (1 - exponentialAverageFactor) * variance_val +
                               exponentialAverageFactor * global_variance[i];

          compute_mean[i] = compute_mean_val;
          compute_inv_var[i] = compute_inv_var_val;
        }
      }
    } else {
      if (blockIdx.y == 0 && threadIdx.y == 0) {
        BatchNormParamType<T> compute_mean_val = x_sum / inner_size;
        BatchNormParamType<T> variance_val =
            x_square_sum / inner_size - compute_mean_val * compute_mean_val;
        BatchNormParamType<T> compute_inv_var_val =
            1 / sqrt(variance_val + epsilon);

        if (save_mean && save_inv_variance) {
          save_mean[i] = compute_mean_val;
          save_inv_variance[i] = compute_inv_var_val;
        }
        global_mean[i] = (1 - exponentialAverageFactor) * compute_mean_val +
                         exponentialAverageFactor * global_mean[i];
        global_variance[i] = (1 - exponentialAverageFactor) * variance_val +
                             exponentialAverageFactor * global_variance[i];

        compute_mean[i] = compute_mean_val;
        compute_inv_var[i] = compute_inv_var_val;
      }
    }
  }
}

template <typename T>
static __global__ void BNForwardTraining2DChannelLastWriteRes(
    const T *x,
    const BatchNormParamType<T> *scale,
    const BatchNormParamType<T> *bias,
    const int C,
    const int N,
    const int HxW,
    T *y,
    BatchNormParamType<T> *compute_mean,
    BatchNormParamType<T> *compute_inv_var) {
  int outer_size = C;
  int inner_size = N * HxW;

  int outer_loop_stride = gridDim.x * blockDim.x;
  int inner_loop_stride = gridDim.y * blockDim.y;

  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < outer_size;
       i += outer_loop_stride) {
    BatchNormParamType<T> mean_val = compute_mean[i];
    BatchNormParamType<T> inv_var_val = compute_inv_var[i];
    BatchNormParamType<T> scale_val = scale[i];
    BatchNormParamType<T> bias_val = bias[i];

    for (int j = blockIdx.y * blockDim.y + threadIdx.y; j < inner_size;
         j += inner_loop_stride) {
      const int index = j * outer_size + i;
      BatchNormParamType<T> x_sub_mean =
          static_cast<BatchNormParamType<T>>(x[index]) - mean_val;
      y[index] = scale_val * x_sub_mean * inv_var_val + bias_val;
    }
  }
}

template <typename T, int BlockDim>
static __global__ void BNForwardTraining2DCompStat(
    const T *x,
    const BatchNormParamType<T> *scale,
    const BatchNormParamType<T> *bias,
    const int C,
    const int N,
    const int HxW,
    const double epsilon,
    double exponentialAverageFactor,
    T *y,
    BatchNormParamType<T> *global_mean,
    BatchNormParamType<T> *global_variance,
    BatchNormParamType<T> *save_mean,
    BatchNormParamType<T> *save_inv_variance,
    BatchNormParamType<T> *compute_mean,
    BatchNormParamType<T> *compute_inv_var,
    BatchNormParamType<T> *block_data_ptr,
    int *flag_ptr) {
  int outer_size = C;
  int inner_size = N * HxW;

  __shared__ BatchNormParamType<T> smem_sum[BlockDim];
  __shared__ BatchNormParamType<T> smem_square_sum[BlockDim];

  int outer_loop_stride = gridDim.y * blockDim.y;
  int inner_loop_stride = gridDim.x * blockDim.x;

  for (int i = blockIdx.y * blockDim.y + threadIdx.y; i < outer_size;
       i += outer_loop_stride) {
    BatchNormParamType<T> x_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> x_square_sum = static_cast<BatchNormParamType<T>>(0);

    for (int j = blockIdx.x * blockDim.x + threadIdx.x; j < inner_size;
         j += inner_loop_stride) {
      const int index = (j / HxW * C + i) * HxW + j % HxW;
      BatchNormParamType<T> x_i = static_cast<BatchNormParamType<T>>(x[index]);
      x_sum += x_i;
      x_square_sum += x_i * x_i;
    }

    // horizonal block sum
    merge_block_horizonal<T>(x_sum,
                             x_square_sum,
                             &smem_sum[0],
                             &smem_square_sum[0],
                             &x_sum,
                             &x_square_sum);

    if (gridDim.x > 1) {
      volatile BatchNormParamType<T> *staging_sum = block_data_ptr;
      volatile BatchNormParamType<T> *staging_square_sum =
          &block_data_ptr[C * gridDim.x];
      // write block data to global memory
      if (threadIdx.x == 0) {
        staging_sum[i + blockIdx.x * C] = x_sum;
        staging_square_sum[i + blockIdx.x * C] = x_square_sum;
      }

      // make sure write is visible to all blocks
      __threadfence();
      __syncthreads();

      __shared__ bool is_last_block_done;
      // mark block done
      if (threadIdx.x == 0 && threadIdx.y == 0) {
        int old = atomicAdd(&flag_ptr[blockIdx.y], 1);
        is_last_block_done = (old == (gridDim.x - 1));
      }

      __syncthreads();

      if (is_last_block_done) {
        x_sum = static_cast<BatchNormParamType<T>>(0);
        x_square_sum = static_cast<BatchNormParamType<T>>(0);
        // thread sum
        for (int x = threadIdx.x; x < gridDim.x; x += blockDim.x) {
          x_sum += staging_sum[i + x * C];
          x_square_sum += staging_square_sum[i + x * C];
        }

        // horizonal block sum
        merge_block_horizonal<T>(x_sum,
                                 x_square_sum,
                                 &smem_sum[0],
                                 &smem_square_sum[0],
                                 &x_sum,
                                 &x_square_sum);

        // final compute
        if (threadIdx.x == 0) {
          BatchNormParamType<T> compute_mean_val = x_sum / inner_size;
          BatchNormParamType<T> variance_val =
              x_square_sum / inner_size - compute_mean_val * compute_mean_val;
          BatchNormParamType<T> compute_inv_var_val =
              1 / sqrt(variance_val + epsilon);

          if (save_mean && save_inv_variance) {
            save_mean[i] = compute_mean_val;
            save_inv_variance[i] = compute_inv_var_val;
          }
          global_mean[i] = (1 - exponentialAverageFactor) * compute_mean_val +
                           exponentialAverageFactor * global_mean[i];
          global_variance[i] = (1 - exponentialAverageFactor) * variance_val +
                               exponentialAverageFactor * global_variance[i];

          compute_mean[i] = compute_mean_val;
          compute_inv_var[i] = compute_inv_var_val;
        }
      }
    } else {
      if (blockIdx.x == 0 && threadIdx.x == 0) {
        BatchNormParamType<T> compute_mean_val = x_sum / inner_size;
        BatchNormParamType<T> variance_val =
            x_square_sum / inner_size - compute_mean_val * compute_mean_val;
        BatchNormParamType<T> compute_inv_var_val =
            1 / sqrt(variance_val + epsilon);

        if (save_mean && save_inv_variance) {
          save_mean[i] = compute_mean_val;
          save_inv_variance[i] = compute_inv_var_val;
        }
        global_mean[i] = (1 - exponentialAverageFactor) * compute_mean_val +
                         exponentialAverageFactor * global_mean[i];
        global_variance[i] = (1 - exponentialAverageFactor) * variance_val +
                             exponentialAverageFactor * global_variance[i];

        compute_mean[i] = compute_mean_val;
        compute_inv_var[i] = compute_inv_var_val;
      }
    }
  }
}

template <typename T>
static __global__ void BNForwardTraining2DWriteRes(
    const T *x,
    const BatchNormParamType<T> *scale,
    const BatchNormParamType<T> *bias,
    const int C,
    const int N,
    const int HxW,
    T *y,
    BatchNormParamType<T> *compute_mean,
    BatchNormParamType<T> *compute_inv_var) {
  int outer_size = C;
  int inner_size = N * HxW;

  int outer_loop_stride = gridDim.y * blockDim.y;
  int inner_loop_stride = gridDim.x * blockDim.x;

  for (int i = blockIdx.y * blockDim.y + threadIdx.y; i < outer_size;
       i += outer_loop_stride) {
    BatchNormParamType<T> mean_val = compute_mean[i];
    BatchNormParamType<T> inv_var_val = compute_inv_var[i];
    BatchNormParamType<T> scale_val = scale[i];
    BatchNormParamType<T> bias_val = bias[i];

    for (int j = blockIdx.x * blockDim.x + threadIdx.x; j < inner_size;
         j += inner_loop_stride) {
      const int index = (j / HxW * C + i) * HxW + j % HxW;
      BatchNormParamType<T> x_sub_mean =
          static_cast<BatchNormParamType<T>>(x[index]) - mean_val;
      y[index] = scale_val * x_sub_mean * inv_var_val + bias_val;
    }
  }
}

template <typename T, typename Context>
void BatchNormKernel(const Context &ctx,
                     const DenseTensor &x,
                     const DenseTensor &mean,
                     const DenseTensor &variance,
yuguo-Jack's avatar
yuguo-Jack committed
519
520
                     const paddle::optional<DenseTensor> &scale,
                     const paddle::optional<DenseTensor> &bias,
“yuguo”'s avatar
2.5  
“yuguo” committed
521
                     bool is_test,
yuguo960516yuguo's avatar
yuguo960516yuguo committed
522
523
524
525
526
527
528
529
530
531
532
533
534
                     float momentum,
                     float epsilon_f,
                     const std::string &data_layout_str,
                     bool use_global_stats,
                     bool trainable_statistics,
                     DenseTensor *y,
                     DenseTensor *mean_out,
                     DenseTensor *variance_out,
                     DenseTensor *saved_mean,
                     DenseTensor *saved_variance,
                     DenseTensor *reserve_space) {
  double epsilon = epsilon_f;
  const bool trainable_stats = trainable_statistics;
“yuguo”'s avatar
2.5  
“yuguo” committed
535
  const DataLayout data_layout = phi::StringToDataLayout(data_layout_str);
yuguo960516yuguo's avatar
yuguo960516yuguo committed
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
  bool test_mode = is_test && (!trainable_stats);

  // Get the size for each dimension.
  // NCHW [batch_size, in_channels, in_height, in_width]
  const auto &x_dims = x.dims();
  PADDLE_ENFORCE_EQ(
      x_dims.size() >= 2 && x_dims.size() <= 5,
      true,
      phi::errors::InvalidArgument(
          "The size of input's dimensions should be between 2 and 5"
          "But received: the size of input's dimensions is [%d]",
          x_dims.size()));

  ctx.template Alloc<T>(y);
  int N, C, H, W, D;
  phi::funcs::ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);

“yuguo”'s avatar
2.5  
“yuguo” committed
553
  auto dtype = phi::backends::gpu::CudnnDataType<T>::type;
yuguo960516yuguo's avatar
yuguo960516yuguo committed
554

yuguo-Jack's avatar
yuguo-Jack committed
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
  auto *Scale = scale.get_ptr();
  auto *Bias = bias.get_ptr();

  phi::DenseTensor new_scale;
  phi::DenseTensor new_bias;

  if (Scale) {
    new_scale = scale.get();
  } else {
    new_scale = phi::Full<T, Context>(ctx, {C}, static_cast<T>(1));
  }

  if (Bias) {
    new_bias = bias.get();
  } else {
    new_bias = phi::Full<T, Context>(ctx, {C}, static_cast<T>(0));
  }

yuguo960516yuguo's avatar
yuguo960516yuguo committed
573
574
#ifdef PADDLE_WITH_HIP
  auto compute_format =
yuguo-Jack's avatar
yuguo-Jack committed
575
      data_layout == DataLayout::kNHWC ? (FLAGS_cudnn_batchnorm_spatial_persistent == true ? DataLayout::kNCHW : DataLayout::kNHWC) : DataLayout::kNCHW;
yuguo960516yuguo's avatar
yuguo960516yuguo committed
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606

// TODO(wangran16): wait for MIOpen to improve the performance of BN
// HIP do not support compute format of NHWC
// auto compute_format = DataLayout::kNCHW;
#else
  const bool fast_nhwc_batch_norm =
      test_mode ||
      (dtype == CUDNN_DATA_HALF && FLAGS_cudnn_batchnorm_spatial_persistent);

  auto compute_format = fast_nhwc_batch_norm && data_layout == DataLayout::kNHWC
                            ? DataLayout::kNHWC
                            : DataLayout::kNCHW;
#endif

  DenseTensor transformed_x(x.type());
  DenseTensor transformed_y(y->type());

  if (data_layout == DataLayout::kNHWC && compute_format == DataLayout::kNCHW &&
      x_dims.size() > 2) {
    VLOG(3) << "Transform input tensor from NHWC to NCHW.";
    ResizeToChannelFirst<Context, T>(ctx, &x, &transformed_x);
    TransToChannelFirst<Context, T>(ctx, &x, &transformed_x);
    ResizeToChannelFirst<Context, T>(ctx, y, &transformed_y);
  } else {
    transformed_x.ShareDataWith(x);
    transformed_y.ShareDataWith(*y);
  }

// ------------------- cudnn descriptors ---------------------
#ifdef PADDLE_WITH_HIP
// TODO(wangran16): wait for MIOpen to improve the performance of BN
yuguo-Jack's avatar
yuguo-Jack committed
607
608
609
610
611
612
613
614
  miopenTensorDescriptor_t data_desc_;
  miopenTensorDescriptor_t bn_param_desc_;
  miopenBatchNormMode_t mode_;

  PADDLE_ENFORCE_GPU_SUCCESS(
      phi::dynload::miopenCreateTensorDescriptor(&data_desc_));
  PADDLE_ENFORCE_GPU_SUCCESS(
      phi::dynload::miopenCreateTensorDescriptor(&bn_param_desc_));
yuguo960516yuguo's avatar
yuguo960516yuguo committed
615
616
617
618
619
620
#else
  cudnnTensorDescriptor_t data_desc_;
  cudnnTensorDescriptor_t bn_param_desc_;
  cudnnBatchNormMode_t mode_;

  PADDLE_ENFORCE_GPU_SUCCESS(
“yuguo”'s avatar
2.5  
“yuguo” committed
621
      phi::dynload::cudnnCreateTensorDescriptor(&data_desc_));
yuguo960516yuguo's avatar
yuguo960516yuguo committed
622
  PADDLE_ENFORCE_GPU_SUCCESS(
“yuguo”'s avatar
2.5  
“yuguo” committed
623
      phi::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));
yuguo960516yuguo's avatar
yuguo960516yuguo committed
624
625
626
627
628
629
630
631
632
633
634
#endif

  if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
    LOG(ERROR) << "Provided epsilon is smaller than "
               << "CUDNN_BN_MIN_EPSILON. Setting it to "
               << "CUDNN_BN_MIN_EPSILON instead.";
  }
  epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);

#ifdef PADDLE_WITH_HIP
// TODO(wangran16): wait for MIOpen to improve the performance of BN
yuguo-Jack's avatar
yuguo-Jack committed
635
636
637
638
639
  if (H == 1 && W == 1) {
    mode_ = miopenBNPerActivation;
  } else {
    mode_ = miopenBNSpatial;
  }
yuguo960516yuguo's avatar
yuguo960516yuguo committed
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
#elif CUDNN_VERSION_MIN(7, 0, 1)
  if (FLAGS_cudnn_batchnorm_spatial_persistent) {
    mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
  } else if (H == 1 && W == 1) {
    mode_ = CUDNN_BATCHNORM_PER_ACTIVATION;
  } else {
    mode_ = CUDNN_BATCHNORM_SPATIAL;
  }
#else
  if (H == 1 && W == 1) {
    mode_ = CUDNN_BATCHNORM_PER_ACTIVATION;
  } else {
    mode_ = CUDNN_BATCHNORM_SPATIAL;
  }
#endif  // CUDNN_VERSION_MIN(7, 0, 1)

  VLOG(3) << "Setting descriptors.";
  std::vector<int> dims;
  std::vector<int> strides;
  if (compute_format == DataLayout::kNCHW) {
    dims = {N, C, H, W, D};
    strides = {C * H * W * D, H * W * D, W * D, D, 1};
  } else {
    dims = {N, C, H, W, D};
    strides = {H * W * D * C, 1, W * D * C, D * C, C};
  }

#ifdef PADDLE_WITH_HIP
// TODO(wangran16): wait for MIOpen to improve the performance of BN
yuguo-Jack's avatar
yuguo-Jack committed
669
670
671
672
673
674
675
676
  PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::miopenSetTensorDescriptor(
      data_desc_, CudnnDataType<T>::type,
      x_dims.size() > 3 ? x_dims.size() : 4, const_cast<int *>(dims.data()),
      const_cast<int *>(strides.data())));
  // Note: PERSISTENT not implemented for inference
  PADDLE_ENFORCE_GPU_SUCCESS(
      phi::dynload::miopenDeriveBNTensorDescriptor(
          bn_param_desc_, data_desc_, mode_));
yuguo960516yuguo's avatar
yuguo960516yuguo committed
677
#else
“yuguo”'s avatar
2.5  
“yuguo” committed
678
679
680
681
682
683
  PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cudnnSetTensorNdDescriptor(
      data_desc_,
      CudnnDataType<T>::type,
      x_dims.size() > 3 ? x_dims.size() : 4,
      dims.data(),
      strides.data()));
yuguo960516yuguo's avatar
yuguo960516yuguo committed
684
  // Note: PERSISTENT not implemented for inference
“yuguo”'s avatar
2.5  
“yuguo” committed
685
686
  PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cudnnDeriveBNTensorDescriptor(
      bn_param_desc_, data_desc_, test_mode ? CUDNN_BATCHNORM_SPATIAL : mode_));
yuguo960516yuguo's avatar
yuguo960516yuguo committed
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
#endif

  auto handle = ctx.cudnn_handle();

  // Now, depending on whether we are running test or not, we have two paths.
  // It is training mode when it's not reference AND not using pre-trained
  // model.
  bool training = !test_mode && !use_global_stats;
  if (!training) {
    // only when test we use input to do computation.
    const auto *est_mean = &mean;
    const auto *est_var = &variance;
    // Run inference mode.
    PADDLE_ENFORCE_EQ(
        est_mean->dims().size(),
        1UL,
        phi::errors::InvalidArgument(
            "The size of mean's dimensions must equal to 1."
            "But received: the size of mean's dimensions mean is [%d],"
            "the dimensions of mean is [%s].",
            est_mean->dims().size(),
            est_mean->dims()));
    PADDLE_ENFORCE_EQ(
        est_var->dims().size(),
        1UL,
        phi::errors::InvalidArgument(
            "The size of variance's dimensions must equal to 1."
            "But received: the size of variance's dimensions is [%d],"
            "the dimensions of variance is [%s].",
            est_var->dims().size(),
            est_var->dims()));
    PADDLE_ENFORCE_EQ(
        est_mean->dims()[0],
        C,
        phi::errors::InvalidArgument(
            "The first dimension of mean must equal to the number of "
            "Channels, which is [%d]. But received: the first dimension"
            "of mean is [%d], the dimensions of mean is [%s].",
            C,
            est_mean->dims()[0],
            est_mean->dims()));
    PADDLE_ENFORCE_EQ(
        est_var->dims()[0],
        C,
        phi::errors::InvalidArgument(
            "The first dimension of variance must equal to the number"
            "of Channels, which is [%d]. But received: the first dimension of"
            "variance is [%d], the dimensions of variance is [%s].",
            C,
            est_var->dims()[0],
            est_var->dims()));

#ifdef PADDLE_WITH_HIP
    const int block_size = 256;
    const int grid_size = (N * C * H * W * D + block_size - 1) / block_size;
    if (compute_format == DataLayout::kNCHW) {
yuguo-Jack's avatar
yuguo-Jack committed
743
744
745
746
747
748
749
750
751
752
753
754
      if (FLAGS_cudnn_batchnorm_spatial_persistent == true) {
        PADDLE_ENFORCE_GPU_SUCCESS(
          phi::dynload::miopenBatchNormalizationForwardInference(
              handle, mode_,
              const_cast<void *>(
                  static_cast<const void *>(CudnnDataType<T>::kOne())),
              const_cast<void *>(
                  static_cast<const void *>(CudnnDataType<T>::kZero())),
              data_desc_,
              static_cast<const void *>(transformed_x.template data<T>()),
              data_desc_,
              static_cast<void *>(
yuguo-Jack's avatar
yuguo-Jack committed
755
                  ctx.template Alloc<T>(&transformed_y)),
yuguo-Jack's avatar
yuguo-Jack committed
756
757
              bn_param_desc_,
              const_cast<void *>(static_cast<const void *>(
yuguo-Jack's avatar
yuguo-Jack committed
758
                  new_scale.template data<BatchNormParamType<T>>())),
yuguo-Jack's avatar
yuguo-Jack committed
759
              const_cast<void *>(static_cast<const void *>(
yuguo-Jack's avatar
yuguo-Jack committed
760
                  new_bias.template data<BatchNormParamType<T>>())),
yuguo-Jack's avatar
yuguo-Jack committed
761
762
763
764
765
766
767
              const_cast<void *>(static_cast<const void *>(
                  est_mean->template data<BatchNormParamType<T>>())),
              const_cast<void *>(static_cast<const void *>(
                  est_var->template data<BatchNormParamType<T>>())),
              epsilon));
      } else {
        BNForwardInference<T, DataLayout::kNCHW>
yuguo960516yuguo's avatar
yuguo960516yuguo committed
768
769
770
771
          <<<grid_size, block_size, 0, ctx.stream()>>>(
              transformed_x.template data<T>(),
              est_mean->template data<BatchNormParamType<T>>(),
              est_var->template data<BatchNormParamType<T>>(),
yuguo-Jack's avatar
yuguo-Jack committed
772
773
              new_scale.template data<BatchNormParamType<T>>(),
              new_bias.template data<BatchNormParamType<T>>(),
yuguo960516yuguo's avatar
yuguo960516yuguo committed
774
775
776
777
778
              C,
              N,
              H * W * D,
              epsilon,
              transformed_y.template data<T>());
yuguo-Jack's avatar
yuguo-Jack committed
779
      }
yuguo960516yuguo's avatar
yuguo960516yuguo committed
780
    } else {
yuguo-Jack's avatar
yuguo-Jack committed
781
782
783
784
785
786
787
788
789
790
791
792
      BNForwardInference<T, DataLayout::kNHWC>
          <<<grid_size, block_size, 0, ctx.stream()>>>(
              transformed_x.template data<T>(),
              est_mean->template data<BatchNormParamType<T>>(),
              est_var->template data<BatchNormParamType<T>>(),
              new_scale.template data<BatchNormParamType<T>>(),
              new_bias.template data<BatchNormParamType<T>>(),
              C,
              N,
              H * W * D,
              epsilon,
              transformed_y.template data<T>());
yuguo960516yuguo's avatar
yuguo960516yuguo committed
793
    }
yuguo-Jack's avatar
yuguo-Jack committed
794

yuguo960516yuguo's avatar
yuguo960516yuguo committed
795
796
#else
    const bool use_native_kernel =
yuguo960516yuguo's avatar
2.4.2  
yuguo960516yuguo committed
797
798
        (x_dims.size() == 2 ||
         (x_dims.size() == 3 && N >= CUDNN_SPATIAL_THRESHOLD_EVAL));
yuguo960516yuguo's avatar
yuguo960516yuguo committed
799
800
801
802
803
804
805
806
807
    if (use_native_kernel) {
      const int block_size = 256;
      const int grid_size = (N * C * H * W * D + block_size - 1) / block_size;
      if (compute_format == DataLayout::kNCHW) {
        BNForwardInference<T, DataLayout::kNCHW>
            <<<grid_size, block_size, 0, ctx.stream()>>>(
                transformed_x.template data<T>(),
                est_mean->template data<BatchNormParamType<T>>(),
                est_var->template data<BatchNormParamType<T>>(),
yuguo-Jack's avatar
yuguo-Jack committed
808
809
                new_scale.template data<BatchNormParamType<T>>(),
                new_bias.template data<BatchNormParamType<T>>(),
yuguo960516yuguo's avatar
yuguo960516yuguo committed
810
811
812
813
814
815
                C,
                N,
                H * W * D,
                epsilon,
                transformed_y.template data<T>());
      } else {
yuguo960516yuguo's avatar
2.4.2  
yuguo960516yuguo committed
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
        if (x_dims.size() == 2) {
          DenseTensor inv_var = phi::Empty<BatchNormParamType<T>>(ctx, {C});
          auto *inv_var_ptr = inv_var.data<BatchNormParamType<T>>();
          const int threads = 512 > C ? C : 512;
          const int blocks = (C + 511) / 512;
          InverseVariance<T><<<blocks, threads>>>(
              est_var->template data<BatchNormParamType<T>>(),
              epsilon,
              C,
              inv_var_ptr);
          BN1DForwardInference<T, DataLayout::kNHWC>
              <<<grid_size, block_size, 0, ctx.stream()>>>(
                  transformed_x.template data<T>(),
                  est_mean->template data<BatchNormParamType<T>>(),
                  // est_var->template data<BatchNormParamType<T>>(),
                  inv_var_ptr,
yuguo-Jack's avatar
yuguo-Jack committed
832
833
                  new_scale.template data<BatchNormParamType<T>>(),
                  new_bias.template data<BatchNormParamType<T>>(),
yuguo960516yuguo's avatar
2.4.2  
yuguo960516yuguo committed
834
835
836
837
838
839
840
841
842
843
844
                  C,
                  N,
                  H * W * D,
                  epsilon,
                  transformed_y.template data<T>());
        } else {
          BNForwardInference<T, DataLayout::kNHWC>
              <<<grid_size, block_size, 0, ctx.stream()>>>(
                  transformed_x.template data<T>(),
                  est_mean->template data<BatchNormParamType<T>>(),
                  est_var->template data<BatchNormParamType<T>>(),
yuguo-Jack's avatar
yuguo-Jack committed
845
846
                  new_scale.template data<BatchNormParamType<T>>(),
                  new_bias.template data<BatchNormParamType<T>>(),
yuguo960516yuguo's avatar
2.4.2  
yuguo960516yuguo committed
847
848
849
850
851
852
                  C,
                  N,
                  H * W * D,
                  epsilon,
                  transformed_y.template data<T>());
        }
yuguo960516yuguo's avatar
yuguo960516yuguo committed
853
854
855
      }
    } else {
      PADDLE_ENFORCE_GPU_SUCCESS(
“yuguo”'s avatar
2.5  
“yuguo” committed
856
          phi::dynload::cudnnBatchNormalizationForwardInference(
yuguo960516yuguo's avatar
yuguo960516yuguo committed
857
858
859
860
861
862
863
864
865
866
              handle,
              // Note: PERSISTENT not implemented for inference
              CUDNN_BATCHNORM_SPATIAL,
              CudnnDataType<T>::kOne(),
              CudnnDataType<T>::kZero(),
              data_desc_,
              transformed_x.template data<T>(),
              data_desc_,
              ctx.template Alloc<T>(&transformed_y),
              bn_param_desc_,
yuguo-Jack's avatar
yuguo-Jack committed
867
868
              new_scale.template data<BatchNormParamType<T>>(),
              new_bias.template data<BatchNormParamType<T>>(),
yuguo960516yuguo's avatar
yuguo960516yuguo committed
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
              est_mean->template data<BatchNormParamType<T>>(),
              est_var->template data<BatchNormParamType<T>>(),
              epsilon));
    }
#endif
  } else {
    // if MomentumTensor is set, use MomentumTensor value, momentum
    // is only used in this training branch

    // need to solve here
    // if (ctx.HasInput("MomentumTensor")) {
    //   const auto *mom_tensor = MomentumTensor;
    //   DenseTensor mom_cpu;
    //   paddle::framework::TensorCopySync(*mom_tensor, platform::CPUPlace(),
    //                                     &mom_cpu);
    //   momentum = mom_cpu.data<float>()[0];
    // }

    // Run training mode.
    // obtain running mean and running inv var, and there is no need
    // to initialize them.
    ctx.template Alloc<BatchNormParamType<T>>(mean_out);
    ctx.template Alloc<BatchNormParamType<T>>(variance_out);

    ctx.template Alloc<BatchNormParamType<T>>(saved_mean);
    ctx.template Alloc<BatchNormParamType<T>>(saved_variance);

    if ((N * H * W * D) == 1) {
      // Only 1 element in normalization dimension,
      // skip the batch norm calculation, let y = x.
“yuguo”'s avatar
2.5  
“yuguo” committed
899
      phi::Copy(ctx, x, ctx.GetPlace(), false, y);
yuguo960516yuguo's avatar
yuguo960516yuguo committed
900
901
902
    } else {
      double this_factor = 1. - momentum;
#ifdef PADDLE_WITH_HIP
“yuguo”'s avatar
2.5  
“yuguo” committed
903
      this_factor = momentum;
yuguo960516yuguo's avatar
yuguo960516yuguo committed
904
905
906
907
908
909
      const int num = transformed_x.numel();
      const int block = 256;
      const int max_threads = ctx.GetMaxPhysicalThreadCount();
      const int max_blocks = std::max(max_threads / block, 1);
      const int grid = std::min(C, max_blocks);
      if (compute_format == DataLayout::kNCHW) {
yuguo-Jack's avatar
yuguo-Jack committed
910
911
912
913
914
915
916
917
918
919
920
        if (FLAGS_cudnn_batchnorm_spatial_persistent == true) {
          PADDLE_ENFORCE_GPU_SUCCESS(
            phi::dynload::miopenBatchNormalizationForwardTraining(
                handle, mode_, const_cast<void *>(static_cast<const void *>(
                                  CudnnDataType<T>::kOne())),
                const_cast<void *>(
                    static_cast<const void *>(CudnnDataType<T>::kZero())),
                data_desc_,
                static_cast<const void *>(transformed_x.template data<T>()),
                data_desc_,
                static_cast<void *>(
yuguo-Jack's avatar
yuguo-Jack committed
921
                    ctx.template Alloc<T>(&transformed_y)),
yuguo-Jack's avatar
yuguo-Jack committed
922
923
                bn_param_desc_,
                const_cast<void *>(static_cast<const void *>(
yuguo-Jack's avatar
yuguo-Jack committed
924
                    new_scale.template data<BatchNormParamType<T>>())),
yuguo-Jack's avatar
yuguo-Jack committed
925
                const_cast<void *>(static_cast<const void *>(
yuguo-Jack's avatar
yuguo-Jack committed
926
                    new_bias.template data<BatchNormParamType<T>>())),
yuguo-Jack's avatar
yuguo-Jack committed
927
928
                this_factor,
                static_cast<void *>(
yuguo-Jack's avatar
yuguo-Jack committed
929
930
                    ctx.template Alloc<BatchNormParamType<T>>(mean_out)),
                static_cast<void *>(ctx.template Alloc<BatchNormParamType<T>>(variance_out)),
yuguo-Jack's avatar
yuguo-Jack committed
931
932
                epsilon,
                static_cast<void *>(
yuguo-Jack's avatar
yuguo-Jack committed
933
934
                    ctx.template Alloc<BatchNormParamType<T>>(saved_mean)),
                static_cast<void *>(ctx.template Alloc<BatchNormParamType<T>>(saved_variance))));
yuguo-Jack's avatar
yuguo-Jack committed
935
936
        } else {
          BNForwardTraining<T, block, DataLayout::kNCHW>
yuguo960516yuguo's avatar
yuguo960516yuguo committed
937
938
            <<<grid, block, 0, ctx.stream()>>>(
                transformed_x.template data<T>(),
yuguo-Jack's avatar
yuguo-Jack committed
939
940
                new_scale.template data<BatchNormParamType<T>>(),
                new_bias.template data<BatchNormParamType<T>>(),
yuguo960516yuguo's avatar
yuguo960516yuguo committed
941
942
943
944
945
946
947
948
949
950
                C,
                N,
                H * W * D,
                epsilon,
                this_factor,
                transformed_y.template data<T>(),
                mean_out->template data<BatchNormParamType<T>>(),
                variance_out->template data<BatchNormParamType<T>>(),
                saved_mean->template data<BatchNormParamType<T>>(),
                saved_variance->template data<BatchNormParamType<T>>());
yuguo-Jack's avatar
yuguo-Jack committed
951
        }  
yuguo960516yuguo's avatar
yuguo960516yuguo committed
952
      } else {
yuguo-Jack's avatar
yuguo-Jack committed
953
954
955
956
957
958
959
960
        BNForwardTraining<T, block, DataLayout::kNHWC>
            <<<grid, block, 0, ctx.stream()>>>(
                transformed_x.template data<T>(),
                new_scale.template data<BatchNormParamType<T>>(),
                new_bias.template data<BatchNormParamType<T>>(),
                C,
                N,
                H * W * D,
yuguo-Jack's avatar
yuguo-Jack committed
961
                epsilon,
yuguo-Jack's avatar
yuguo-Jack committed
962
963
964
965
966
967
                this_factor,
                transformed_y.template data<T>(),
                mean_out->template data<BatchNormParamType<T>>(),
                variance_out->template data<BatchNormParamType<T>>(),
                saved_mean->template data<BatchNormParamType<T>>(),
                saved_variance->template data<BatchNormParamType<T>>());
yuguo960516yuguo's avatar
yuguo960516yuguo committed
968
      }
yuguo-Jack's avatar
yuguo-Jack committed
969

yuguo960516yuguo's avatar
yuguo960516yuguo committed
970
971
972
973
#else
      // const size_t CUDNN_PER_ACTIVATION_THRESHOLD = 131070;
      const bool use_native_kernel =
          ((x_dims.size() == 2 && N >= CUDNN_PER_ACTIVATION_THRESHOLD) ||
yuguo960516yuguo's avatar
2.4.2  
yuguo960516yuguo committed
974
           (x_dims.size() == 3 && N >= CUDNN_SPATIAL_THRESHOLD_TRAIN));
yuguo960516yuguo's avatar
yuguo960516yuguo committed
975
      if (use_native_kernel) {
“yuguo”'s avatar
2.5  
“yuguo” committed
976
        double this_factor = momentum;
yuguo960516yuguo's avatar
yuguo960516yuguo committed
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
        dim3 block;
        dim3 grid;
        const int block_size = 512;
        const int MAX_GRID_SIZE = 128;
        const int WARP_SIZE = 32;

        // init intermediate storage
        DenseTensor block_data_tensor;
        DenseTensor flag_tensor;
        DenseTensor compute_mean_tensor =
            phi::Empty<BatchNormParamType<T>, Context>(ctx, {C});
        DenseTensor compute_inv_var_tensor =
            phi::Empty<BatchNormParamType<T>, Context>(ctx, {C});

        BatchNormParamType<T> *block_data_ptr = nullptr;
        int *flag_ptr = nullptr;

        if (x_dims.size() != 2 && compute_format == DataLayout::kNCHW) {
          // init block&grid config
          int block_x =
              std::min(phi::funcs::details::GetLastPow2(H * W * D), block_size);
          int block_y = std::min(phi::funcs::details::GetLastPow2(C),
                                 block_size / block_x);

          if (block_x * block_y != block_size) {
            block_x =
                std::min(phi::funcs::details::GetLastPow2(N * H * W * D / 16),
                         block_size / block_y);
          }

          int grid_x =
              std::min((N * H * W * D + block_x * 16 - 1) / (block_x * 16),
                       MAX_GRID_SIZE);
          int grid_y = (C + block_y - 1) / block_y;

          block.x = block_x;
          block.y = block_y;
          grid.x = grid_x;
          grid.y = grid_y;

          if (grid.x > 1) {
            block_data_tensor = phi::Empty<BatchNormParamType<T>, Context>(
                ctx, {2 * C * grid.x});
            flag_tensor = phi::Empty<int, Context>(ctx, {grid.y});

            block_data_ptr = block_data_tensor.data<BatchNormParamType<T>>();
            flag_ptr = flag_tensor.data<int>();
            funcs::SetConstant<Context, int> set_zero;
            set_zero(ctx, &flag_tensor, static_cast<int>(0));
          }
          BNForwardTraining2DCompStat<T, block_size>
              <<<grid, block, 0, ctx.stream()>>>(
                  transformed_x.template data<T>(),
yuguo-Jack's avatar
yuguo-Jack committed
1030
1031
                  new_scale.template data<BatchNormParamType<T>>(),
                  new_bias.template data<BatchNormParamType<T>>(),
yuguo960516yuguo's avatar
yuguo960516yuguo committed
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
                  C,
                  N,
                  H * W * D,
                  epsilon,
                  this_factor,
                  transformed_y.template data<T>(),
                  mean_out->template data<BatchNormParamType<T>>(),
                  variance_out->template data<BatchNormParamType<T>>(),
                  saved_mean->template data<BatchNormParamType<T>>(),
                  saved_variance->template data<BatchNormParamType<T>>(),
                  compute_mean_tensor.data<BatchNormParamType<T>>(),
                  compute_inv_var_tensor.data<BatchNormParamType<T>>(),
                  block_data_ptr,
                  flag_ptr);

          BNForwardTraining2DWriteRes<T><<<grid, block, 0, ctx.stream()>>>(
              transformed_x.template data<T>(),
yuguo-Jack's avatar
yuguo-Jack committed
1049
1050
              new_scale.template data<BatchNormParamType<T>>(),
              new_bias.template data<BatchNormParamType<T>>(),
yuguo960516yuguo's avatar
yuguo960516yuguo committed
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
              C,
              N,
              H * W * D,
              transformed_y.template data<T>(),
              compute_mean_tensor.data<BatchNormParamType<T>>(),
              compute_inv_var_tensor.data<BatchNormParamType<T>>());
        } else {
          // init block&grid config
          int block_x =
              std::min(phi::funcs::details::GetLastPow2(C), WARP_SIZE);
          int block_y =
              std::min(phi::funcs::details::GetLastPow2(N * H * W * D / 16),
                       block_size / block_x);
          if (block_x * block_y != block_size) {
            block_x = std::min(phi::funcs::details::GetLastPow2(C),
                               block_size / block_y);
          }
          int grid_x = (C + block_x - 1) / block_x;
          int grid_y =
              std::min((N * H * W * D + block_y * 16 - 1) / (block_y * 16),
                       MAX_GRID_SIZE);

          block.x = block_x;
          block.y = block_y;
          grid.x = grid_x;
          grid.y = grid_y;

          if (grid.y > 1) {
            block_data_tensor = phi::Empty<BatchNormParamType<T>, Context>(
                ctx, {2 * C * grid.y});
            flag_tensor = phi::Empty<int, Context>(ctx, {grid.x});

            block_data_ptr = block_data_tensor.data<BatchNormParamType<T>>();
            flag_ptr = flag_tensor.data<int>();
            funcs::SetConstant<Context, int> set_zero;
            set_zero(ctx, &flag_tensor, static_cast<int>(0));
          }
          BNForwardTraining2DChannelLastCompStat<T, block_size>
              <<<grid, block, 0, ctx.stream()>>>(
                  transformed_x.template data<T>(),
yuguo-Jack's avatar
yuguo-Jack committed
1091
1092
                  new_scale.template data<BatchNormParamType<T>>(),
                  new_bias.template data<BatchNormParamType<T>>(),
yuguo960516yuguo's avatar
yuguo960516yuguo committed
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
                  C,
                  N,
                  H * W * D,
                  epsilon,
                  this_factor,
                  transformed_y.template data<T>(),
                  mean_out->template data<BatchNormParamType<T>>(),
                  variance_out->template data<BatchNormParamType<T>>(),
                  saved_mean->template data<BatchNormParamType<T>>(),
                  saved_variance->template data<BatchNormParamType<T>>(),
                  compute_mean_tensor.data<BatchNormParamType<T>>(),
                  compute_inv_var_tensor.data<BatchNormParamType<T>>(),
                  block_data_ptr,
                  flag_ptr);

          BNForwardTraining2DChannelLastWriteRes<T>
              <<<grid, block, 0, ctx.stream()>>>(
                  transformed_x.template data<T>(),
yuguo-Jack's avatar
yuguo-Jack committed
1111
1112
                  new_scale.template data<BatchNormParamType<T>>(),
                  new_bias.template data<BatchNormParamType<T>>(),
yuguo960516yuguo's avatar
yuguo960516yuguo committed
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
                  C,
                  N,
                  H * W * D,
                  transformed_y.template data<T>(),
                  compute_mean_tensor.data<BatchNormParamType<T>>(),
                  compute_inv_var_tensor.data<BatchNormParamType<T>>());
        }
      } else {
#if CUDNN_VERSION_MIN(7, 4, 1)
        size_t workspace_size = 0;
        size_t reserve_space_size = 0;
        void *reserve_space_ptr = nullptr;
        void *workspace_ptr = nullptr;
        DenseTensor workspace_tensor;
        DenseTensor reserve_space_tensor;
        // Create reserve space and workspace for batch norm.
        // Create tensor for each batchnorm op, it will be used in the
        // backward. Thus this tensor shouldn't be temp.
“yuguo”'s avatar
2.5  
“yuguo” committed
1131
        // auto *reserve_space = ctx.Output<phi::DenseTensor>("ReserveSpace");
yuguo960516yuguo's avatar
yuguo960516yuguo committed
1132
1133
1134
1135
1136
1137
1138
1139
1140
        if (reserve_space == nullptr) {
          reserve_space = &reserve_space_tensor;
        }
        PADDLE_ENFORCE_NOT_NULL(
            reserve_space,
            phi::errors::NotFound(
                "The argument ReserveSpace of batch_norm op is not found."));
        // --------------- cudnn batchnorm workspace ---------------
        PADDLE_ENFORCE_GPU_SUCCESS(
“yuguo”'s avatar
2.5  
“yuguo” committed
1141
            phi::dynload::
yuguo960516yuguo's avatar
yuguo960516yuguo committed
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
                cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize(
                    /*handle=*/handle,
                    /*mode=*/mode_,
                    /*bnIps=*/CUDNN_BATCHNORM_OPS_BN,
                    /*xDesc=*/data_desc_,
                    /*zDesc=*/nullptr,
                    /*yDesc=*/data_desc_,
                    /*bnScaleBiasMeanVarDesc=*/bn_param_desc_,
                    /*activationDesc=*/nullptr,
                    /*sizeInBytes=*/&workspace_size));

        // -------------- cudnn batchnorm reserve space --------------
        PADDLE_ENFORCE_GPU_SUCCESS(
“yuguo”'s avatar
2.5  
“yuguo” committed
1155
1156
1157
1158
1159
1160
1161
            phi::dynload::cudnnGetBatchNormalizationTrainingExReserveSpaceSize(
                /*handle=*/handle,
                /*mode=*/mode_,
                /*bnOps=*/CUDNN_BATCHNORM_OPS_BN,
                /*activationDesc=*/nullptr,
                /*xDesc=*/data_desc_,
                /*sizeInBytes=*/&reserve_space_size));
yuguo960516yuguo's avatar
yuguo960516yuguo committed
1162
1163
1164
1165
1166
1167
1168
1169

        reserve_space->Resize({static_cast<int64_t>(reserve_space_size)});
        reserve_space_ptr =
            static_cast<void *>(ctx.template Alloc<uint8_t>(reserve_space));
        workspace_tensor.Resize({static_cast<int64_t>(workspace_size)});
        workspace_ptr =
            static_cast<void *>(ctx.template Alloc<uint8_t>(&workspace_tensor));
        PADDLE_ENFORCE_GPU_SUCCESS(
“yuguo”'s avatar
2.5  
“yuguo” committed
1170
            phi::dynload::cudnnBatchNormalizationForwardTrainingEx(
yuguo960516yuguo's avatar
yuguo960516yuguo committed
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
                handle,
                mode_,
                CUDNN_BATCHNORM_OPS_BN,
                CudnnDataType<T>::kOne(),
                CudnnDataType<T>::kZero(),
                data_desc_,
                transformed_x.template data<T>(),
                nullptr,
                nullptr,
                data_desc_,
                transformed_y.template data<T>(),
                bn_param_desc_,
yuguo-Jack's avatar
yuguo-Jack committed
1183
1184
                new_scale.template data<BatchNormParamType<T>>(),
                new_bias.template data<BatchNormParamType<T>>(),
yuguo960516yuguo's avatar
yuguo960516yuguo committed
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
                this_factor,
                ctx.template Alloc<BatchNormParamType<T>>(mean_out),
                ctx.template Alloc<BatchNormParamType<T>>(variance_out),
                epsilon,
                ctx.template Alloc<BatchNormParamType<T>>(saved_mean),
                ctx.template Alloc<BatchNormParamType<T>>(saved_variance),
                nullptr,
                workspace_ptr,
                workspace_size,
                reserve_space_ptr,
                reserve_space_size));
#else
        PADDLE_ENFORCE_GPU_SUCCESS(
“yuguo”'s avatar
2.5  
“yuguo” committed
1198
            phi::dynload::cudnnBatchNormalizationForwardTraining(
yuguo960516yuguo's avatar
yuguo960516yuguo committed
1199
1200
1201
1202
1203
1204
1205
1206
1207
                handle,
                mode_,
                CudnnDataType<T>::kOne(),
                CudnnDataType<T>::kZero(),
                data_desc_,
                transformed_x.template data<T>(),
                data_desc_,
                ctx.template Alloc<T>(&transformed_y),
                bn_param_desc_,
yuguo-Jack's avatar
yuguo-Jack committed
1208
1209
                new_scale.template data<BatchNormParamType<T>>(),
                new_bias.template data<BatchNormParamType<T>>(),
yuguo960516yuguo's avatar
yuguo960516yuguo committed
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
                this_factor,
                ctx.template Alloc<BatchNormParamType<T>>(mean_out),
                ctx.template Alloc<BatchNormParamType<T>>(variance_out),
                epsilon,
                ctx.template Alloc<BatchNormParamType<T>>(saved_mean),
                ctx.template Alloc<BatchNormParamType<T>>(saved_variance)));
#endif  // CUDNN_VERSION_MIN(7, 4, 1)
      }
#endif
    }
  }

  if (data_layout == DataLayout::kNHWC && compute_format == DataLayout::kNCHW &&
      x_dims.size() > 2) {
    VLOG(3) << "Transform batchnorm output from NCHW to NHWC";
    TransToChannelLast<Context, T>(ctx, &transformed_y, y);
  }
#ifdef PADDLE_WITH_HIP
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// clean when exit.
yuguo-Jack's avatar
yuguo-Jack committed
1230
1231
1232
1233
  PADDLE_ENFORCE_GPU_SUCCESS(
      phi::dynload::miopenDestroyTensorDescriptor(data_desc_));
  PADDLE_ENFORCE_GPU_SUCCESS(
      phi::dynload::miopenDestroyTensorDescriptor(bn_param_desc_));
yuguo960516yuguo's avatar
yuguo960516yuguo committed
1234
1235
1236
#else
  // clean when exit.
  PADDLE_ENFORCE_GPU_SUCCESS(
“yuguo”'s avatar
2.5  
“yuguo” committed
1237
      phi::dynload::cudnnDestroyTensorDescriptor(data_desc_));
yuguo960516yuguo's avatar
yuguo960516yuguo committed
1238
  PADDLE_ENFORCE_GPU_SUCCESS(
“yuguo”'s avatar
2.5  
“yuguo” committed
1239
      phi::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
yuguo960516yuguo's avatar
yuguo960516yuguo committed
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
#endif
}

}  // namespace phi

#ifdef PADDLE_WITH_HIP
PD_REGISTER_KERNEL(batch_norm,
                   GPU,
                   ALL_LAYOUT,
                   phi::BatchNormKernel,
                   float,
“yuguo”'s avatar
2.5  
“yuguo” committed
1251
                   phi::dtype::bfloat16,
yuguo960516yuguo's avatar
yuguo960516yuguo committed
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
                   phi::dtype::float16) {
  kernel->InputAt(1).SetDataType(phi::DataType::FLOAT32);
  kernel->InputAt(2).SetDataType(phi::DataType::FLOAT32);
  kernel->InputAt(3).SetDataType(phi::DataType::FLOAT32);
  kernel->InputAt(4).SetDataType(phi::DataType::FLOAT32);
  kernel->OutputAt(1).SetDataType(phi::DataType::FLOAT32);
  kernel->OutputAt(2).SetDataType(phi::DataType::FLOAT32);
  kernel->OutputAt(3).SetDataType(phi::DataType::FLOAT32);
  kernel->OutputAt(4).SetDataType(phi::DataType::FLOAT32);
}
#else
“yuguo”'s avatar
2.5  
“yuguo” committed
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
#if CUDNN_VERSION_MIN(8, 1, 0)
PD_REGISTER_KERNEL(batch_norm,
                   GPU,
                   ALL_LAYOUT,
                   phi::BatchNormKernel,
                   float,
                   double,
                   phi::dtype::bfloat16,
                   phi::dtype::float16) {
  if (kernel_key.dtype() == phi::DataType::FLOAT16 ||
      kernel_key.dtype() == phi::DataType::BFLOAT16) {
    kernel->InputAt(1).SetDataType(phi::DataType::FLOAT32);
    kernel->InputAt(2).SetDataType(phi::DataType::FLOAT32);
    kernel->InputAt(3).SetDataType(phi::DataType::FLOAT32);
    kernel->InputAt(4).SetDataType(phi::DataType::FLOAT32);
    kernel->OutputAt(1).SetDataType(phi::DataType::FLOAT32);
    kernel->OutputAt(2).SetDataType(phi::DataType::FLOAT32);
    kernel->OutputAt(3).SetDataType(phi::DataType::FLOAT32);
    kernel->OutputAt(4).SetDataType(phi::DataType::FLOAT32);
  }
yuguo-Jack's avatar
yuguo-Jack committed
1283
1284
1285
#if CUDNN_VERSION_MIN(7, 4, 1)
  kernel->OutputAt(5).SetDataType(phi::DataType::UINT8);
#endif
“yuguo”'s avatar
2.5  
“yuguo” committed
1286
1287
}
#else
yuguo960516yuguo's avatar
yuguo960516yuguo committed
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
PD_REGISTER_KERNEL(batch_norm,
                   GPU,
                   ALL_LAYOUT,
                   phi::BatchNormKernel,
                   float,
                   double,
                   phi::dtype::float16) {
  if (kernel_key.dtype() == phi::DataType::FLOAT16) {
    kernel->InputAt(1).SetDataType(phi::DataType::FLOAT32);
    kernel->InputAt(2).SetDataType(phi::DataType::FLOAT32);
    kernel->InputAt(3).SetDataType(phi::DataType::FLOAT32);
    kernel->InputAt(4).SetDataType(phi::DataType::FLOAT32);
    kernel->OutputAt(1).SetDataType(phi::DataType::FLOAT32);
    kernel->OutputAt(2).SetDataType(phi::DataType::FLOAT32);
    kernel->OutputAt(3).SetDataType(phi::DataType::FLOAT32);
    kernel->OutputAt(4).SetDataType(phi::DataType::FLOAT32);
  }
yuguo-Jack's avatar
yuguo-Jack committed
1305
1306
1307
#if CUDNN_VERSION_MIN(7, 4, 1)
  kernel->OutputAt(5).SetDataType(phi::DataType::UINT8);
#endif
yuguo960516yuguo's avatar
yuguo960516yuguo committed
1308
}
“yuguo”'s avatar
2.5  
“yuguo” committed
1309
#endif
yuguo960516yuguo's avatar
yuguo960516yuguo committed
1310
1311

#endif