Commit fb111087 authored by yingfhu's avatar yingfhu
Browse files

[Feat] support opencompass

parent 7d346000
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import ARCDataset
ARC_c_reader_cfg = dict(
input_columns=['question', 'textA', 'textB', 'textC', 'textD'],
output_column='answerKey')
ARC_c_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
"A": "Question: {question}\nAnswer: {textA}",
"B": "Question: {question}\nAnswer: {textB}",
"C": "Question: {question}\nAnswer: {textC}",
"D": "Question: {question}\nAnswer: {textD}"
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
ARC_c_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
ARC_c_datasets = [
dict(
type=ARCDataset,
abbr='ARC-c',
path='./data/ARC/ARC-c/ARC-Challenge-Dev.jsonl',
reader_cfg=ARC_c_reader_cfg,
infer_cfg=ARC_c_infer_cfg,
eval_cfg=ARC_c_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .CLUE_C3_gen_9e3de9 import C3_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import C3Dataset_V2
C3_reader_cfg = dict(
input_columns=[
"question",
"content",
"choice0",
"choice1",
"choice2",
"choice3",
"choices",
],
output_column="label",
)
C3_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
prompt=
"{content}\n问:{question}\nA. {choice0}\nB. {choice1}\nC. {choice2}\nD. {choice3}\n请从“A”,“B”,“C”,“D”中进行选择。\n答:",
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
C3_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role="BOT",
pred_postprocessor=dict(type="first-capital"),
)
C3_datasets = [
dict(
abbr="C3",
type=C3Dataset_V2,
path="./data/CLUE/C3/dev_0.json",
reader_cfg=C3_reader_cfg,
infer_cfg=C3_infer_cfg,
eval_cfg=C3_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .CLUE_DRCD_gen_03b96b import DRCD_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import AFQMCDataset_V2
afqmc_reader_cfg = dict(
input_columns=["sentence1", "sentence2"],
output_column="label",
test_split="train")
afqmc_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
prompt=
"语句一:“{sentence1}”\n语句二:“{sentence2}”\n语句一与语句二是关于蚂蚁金融产品的疑问,两者所询问的内容是否完全一致?\nA. 不完全一致\nB. 完全一致\n请从“A”,“B”中进行选择。\n答:",
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
afqmc_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role="BOT",
pred_postprocessor=dict(type="first-capital"),
)
afqmc_datasets = [
dict(
abbr="afqmc-dev",
type=AFQMCDataset_V2,
path="./data/CLUE/AFQMC/dev.json",
reader_cfg=afqmc_reader_cfg,
infer_cfg=afqmc_infer_cfg,
eval_cfg=afqmc_eval_cfg,
),
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
afqmc_reader_cfg = dict(
input_columns=['sentence1', 'sentence2'],
output_column='label',
test_split='train')
afqmc_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0: "{sentence1},{sentence2}不同。",
1: "{sentence1},{sentence2}相似。"
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
afqmc_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
afqmc_datasets = [
dict(
type=HFDataset,
abbr='afqmc-dev',
path='json',
data_files='./data/CLUE/AFQMC/dev.json',
split='train',
reader_cfg=afqmc_reader_cfg,
infer_cfg=afqmc_infer_cfg,
eval_cfg=afqmc_eval_cfg),
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
afqmc_reader_cfg = dict(
input_columns=['sentence1', 'sentence2'],
output_column='label',
test_split='train')
afqmc_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0:
dict(round=[
dict(
role="HUMAN", prompt="“{sentence1}”与“{sentence2}”不同还是相似?"),
dict(role="BOT", prompt="不同。")
]),
1:
dict(round=[
dict(
role="HUMAN", prompt="“{sentence1}”与“{sentence2}”不同还是相似?"),
dict(role="BOT", prompt="相似")
]),
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
afqmc_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
afqmc_datasets = [
dict(
type=HFDataset,
abbr='afqmc-dev',
path='json',
data_files='./data/CLUE/AFQMC/dev.json',
split='train',
reader_cfg=afqmc_reader_cfg,
infer_cfg=afqmc_infer_cfg,
eval_cfg=afqmc_eval_cfg),
]
from mmengine.config import read_base
with read_base():
from .CLUE_cmnli_gen_316313 import cmnli_datasets # noqa: F401, F403
from mmengine.config import read_base
with read_base():
from .CLUE_ocnli_gen_7c44b0 import ocnli_datasets # noqa: F401, F403
from mmengine.config import read_base
with read_base():
from .FewCLUE_chid_ppl_b6cd88 import chid_datasets # noqa: F401, F403
from mmengine.config import read_base
with read_base():
from .FewCLUE_cluewsc_gen_276956 import cluewsc_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CluewscDataset_V2
cluewsc_reader_cfg = dict(
input_columns=["span1", "span2", "text", "new_text"],
output_column="label",
)
cluewsc_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
prompt=
"{text}\n此处,“{span2}”是否指代“{span1}“?\nA. 是\nB. 否\n请从”A“,”B“中进行选择。\n答:",
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
cluewsc_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role="BOT",
pred_postprocessor=dict(type="first-capital"),
)
cluewsc_datasets = [
dict(
abbr="cluewsc-dev",
type=CluewscDataset_V2,
path="./data/FewCLUE/cluewsc/dev_few_all.json",
reader_cfg=cluewsc_reader_cfg,
infer_cfg=cluewsc_infer_cfg,
eval_cfg=cluewsc_eval_cfg,
),
dict(
abbr="cluewsc-test",
type=CluewscDataset_V2,
path="./data/FewCLUE/cluewsc/test_public.json",
reader_cfg=cluewsc_reader_cfg,
infer_cfg=cluewsc_infer_cfg,
eval_cfg=cluewsc_eval_cfg,
),
]
from mmengine.config import read_base
with read_base():
from .FewCLUE_csl_gen_1b0c02 import csl_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CslDataset
csl_reader_cfg = dict(
input_columns=["abst", "keywords"], output_column='label')
csl_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0: "摘要:{abst}",
1: "摘要:{abst}\n关键词:{keywords}"
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
csl_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
csl_datasets = [
dict(
type=CslDataset,
path='json',
abbr='csl_dev',
data_files='./data/FewCLUE/csl/dev_few_all.json',
split='train',
reader_cfg=csl_reader_cfg,
infer_cfg=csl_infer_cfg,
eval_cfg=csl_eval_cfg),
dict(
type=CslDataset,
path='json',
abbr='csl_test',
data_files='./data/FewCLUE/csl/test_public.json',
split='train',
reader_cfg=csl_reader_cfg,
infer_cfg=csl_infer_cfg,
eval_cfg=csl_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import cmnliDataset_V2
ocnli_fc_reader_cfg = dict(
input_columns=["sentence1", "sentence2"],
output_column="label",
test_split="train")
ocnli_fc_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
prompt=
"阅读文章:{sentence1}\n根据上文,回答如下问题:{sentence2}\nA. 对\nB. 错\nC. 可能\n请从“A”,“B”,“C”中进行选择。\n答:"
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
ocnli_fc_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role="BOT",
pred_postprocessor=dict(type="first-capital"),
)
ocnli_fc_datasets = [
dict(
abbr="ocnli_fc-dev",
type=cmnliDataset_V2, # ocnli_fc share the same format with cmnli
path="./data/FewCLUE/ocnli/dev_few_all.json",
reader_cfg=ocnli_fc_reader_cfg,
infer_cfg=ocnli_fc_infer_cfg,
eval_cfg=ocnli_fc_eval_cfg,
),
dict(
abbr="ocnli_fc-test",
type=cmnliDataset_V2, # ocnli_fc share the same format with cmnli
path="./data/FewCLUE/ocnli/test_public.json",
reader_cfg=ocnli_fc_reader_cfg,
infer_cfg=ocnli_fc_infer_cfg,
eval_cfg=ocnli_fc_eval_cfg,
),
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import TNewsDataset
tnews_reader_cfg = dict(input_columns='sentence', output_column='label_desc2')
tnews_labels = [
'农业新闻', '旅游新闻', '游戏新闻', '科技类别公司新闻', '体育类别新闻', '初升高教育新闻', '娱乐圈新闻', '投资资讯',
'军事类别常识', '车辆新闻', '楼市新闻', '环球不含中国类别新闻', '书籍文化历史类别新闻', '故事类别新闻', '股票市场类别新闻'
]
tnews_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
lb: dict(round=[
dict(role='HUMAN', prompt='以下内容属于什么新闻:{sentence}。'),
dict(role='BOT', prompt=lb)
])
for lb in tnews_labels
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
tnews_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
tnews_datasets = [
dict(
type=TNewsDataset,
path='json',
abbr='tnews-dev',
data_files='./data/FewCLUE/tnews/dev_few_all.json',
split='train',
reader_cfg=tnews_reader_cfg,
infer_cfg=tnews_infer_cfg,
eval_cfg=tnews_eval_cfg),
dict(
type=TNewsDataset,
path='json',
abbr='tnews-test',
data_files='./data/FewCLUE/tnews/test_public.json',
split='train',
reader_cfg=tnews_reader_cfg,
infer_cfg=tnews_infer_cfg,
eval_cfg=tnews_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
AX_b_reader_cfg = dict(
input_columns=["sentence1", "sentence2"],
output_column="label",
test_split="train")
AX_b_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
"entailment":
dict(round=[
dict(
role="HUMAN",
prompt=
"{sentence1}\n{sentence2}\nIs the sentence below entailed by the sentence above?"
),
dict(role="BOT", prompt="Yes"),
]),
"not_entailment":
dict(round=[
dict(
role="HUMAN",
prompt=
"{sentence1}\n{sentence2}\nIs the sentence below entailed by the sentence above?"
),
dict(role="BOT", prompt="No"),
])
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
AX_b_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
AX_b_datasets = [
dict(
type=HFDataset,
abbr="AX_b",
path="json",
data_files="./data/SuperGLUE/AX-b/AX-b.jsonl",
split="train",
reader_cfg=AX_b_reader_cfg,
infer_cfg=AX_b_infer_cfg,
eval_cfg=AX_b_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BoolQDataset
BoolQ_reader_cfg = dict(
input_columns=["question", "passage"],
output_column="answer",
test_split="train")
BoolQ_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0:
dict(round=[
dict(role="HUMAN", prompt="{passage}\nQuestion: {question}?"),
dict(role="BOT", prompt="No"),
]),
1:
dict(round=[
dict(role="HUMAN", prompt="{passage}\nQuestion: {question}?"),
dict(role="BOT", prompt="Yes"),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
BoolQ_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
BoolQ_datasets = [
dict(
type=BoolQDataset,
abbr="BoolQ",
path="json",
data_files="./data/SuperGLUE/BoolQ/val.jsonl",
split="train",
reader_cfg=BoolQ_reader_cfg,
infer_cfg=BoolQ_infer_cfg,
eval_cfg=BoolQ_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
CB_reader_cfg = dict(
input_columns=['premise', 'hypothesis'], output_column='label')
CB_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'contradiction': '{premise}?contradiction, {hypothesis}',
'entailment': '{premise}?entailment, {hypothesis}',
'neutral': '{premise}?neutral, {hypothesis}'
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
CB_eval_cfg = dict(evaluator=dict(type=AccEvaluator), )
CB_datasets = [
dict(
type=HFDataset,
abbr='CB',
path='json',
split='train',
data_files='./data/SuperGLUE/CB/val.jsonl',
reader_cfg=CB_reader_cfg,
infer_cfg=CB_infer_cfg,
eval_cfg=CB_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_COPA_gen_6d5e67 import COPA_datasets # noqa: F401, F403
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment