Commit cbe9fe2c authored by Ezra-Yu's avatar Ezra-Yu Committed by gaotong
Browse files

Add Release Contraibution

parent 36f11110
exclude: |
(?x)^(
tests/data/|
opencompass/models/internal/|
opencompass/utils/internal/|
configs/
)
repos:
- repo: https://github.com/PyCQA/flake8
rev: 5.0.4
hooks:
- id: flake8
- repo: https://github.com/PyCQA/isort
rev: 5.11.5
hooks:
- id: isort
- repo: https://github.com/pre-commit/mirrors-yapf
rev: v0.32.0
hooks:
- id: yapf
- repo: https://github.com/codespell-project/codespell
rev: v2.2.1
hooks:
- id: codespell
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.3.0
hooks:
- id: trailing-whitespace
exclude: |
(?x)^(
dicts/|
projects/.*?/dicts/
)
- id: check-yaml
- id: end-of-file-fixer
exclude: |
(?x)^(
dicts/|
projects/.*?/dicts/
)
- id: requirements-txt-fixer
- id: double-quote-string-fixer
- id: check-merge-conflict
- id: fix-encoding-pragma
args: ["--remove"]
- id: mixed-line-ending
args: ["--fix=lf"]
- id: mixed-line-ending
args: ["--fix=lf"]
- repo: https://github.com/executablebooks/mdformat
rev: 0.7.9
hooks:
- id: mdformat
args: ["--number", "--table-width", "200"]
additional_dependencies:
- mdformat-openmmlab
- mdformat_frontmatter
- linkify-it-py
- repo: https://github.com/myint/docformatter
rev: v1.3.1
hooks:
- id: docformatter
args: ["--in-place", "--wrap-descriptions", "79"]
# - repo: https://github.com/open-mmlab/pre-commit-hooks
# rev: v0.2.0 # Use the ref you want to point at
# hooks:
# - id: check-algo-readme
# - id: check-copyright
# args: ["mmocr", "tests", "tools"] # these directories will be checked
from mmengine.config import read_base
with read_base():
from .ARC_e_ppl_f86898 import ARC_e_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import C3Dataset
C3_reader_cfg = dict(
input_columns=[
'question', 'content', 'choice0', 'choice1', 'choice2', 'choice3',
'choices'
],
output_column='label')
C3_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
i: dict(round=[
dict(role="HUMAN", prompt="文章:{content}\n问题:{question}"),
dict(role="BOT", prompt=f"答案:{{choice{i}}}")
])
for i in range(4)
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
C3_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
C3_datasets = [
dict(
type=C3Dataset,
abbr='C3',
path='./data/CLUE/C3/dev_0.json',
reader_cfg=C3_reader_cfg,
infer_cfg=C3_infer_cfg,
eval_cfg=C3_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import EMEvaluator
from opencompass.datasets import CMRCDataset
CMRC_reader_cfg = dict(
input_columns=['question', 'context'], output_column='answers')
CMRC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
prompt="文章:{context}\n根据上文,回答如下问题:\n{question}\n答:"),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
CMRC_eval_cfg = dict(
evaluator=dict(type=EMEvaluator),
pred_role="BOT",
)
CMRC_datasets = [
dict(
type=CMRCDataset,
abbr='CMRC_dev',
path='./data/CLUE/CMRC/dev.json',
reader_cfg=CMRC_reader_cfg,
infer_cfg=CMRC_infer_cfg,
eval_cfg=CMRC_eval_cfg),
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import EMEvaluator
from opencompass.datasets import CMRCDataset
CMRC_reader_cfg = dict(
input_columns=['question', 'context'], output_column='answers')
CMRC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(role="HUMAN", prompt="文章:{context}\n根据上文,回答如下问题:{question}"),
dict(role="BOT", prompt="答:"),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
CMRC_eval_cfg = dict(
evaluator=dict(type=EMEvaluator),
pred_role="BOT",
)
CMRC_datasets = [
dict(
type=CMRCDataset,
abbr='CMRC_dev',
path='./data/CLUE/CMRC/dev.json',
reader_cfg=CMRC_reader_cfg,
infer_cfg=CMRC_infer_cfg,
eval_cfg=CMRC_eval_cfg),
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import EMEvaluator
from opencompass.datasets import DRCDDataset
DRCD_reader_cfg = dict(
input_columns=['question', 'context'], output_column='answers')
DRCD_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
prompt="文章:{context}\n根据上文,回答如下问题:\n{question}\n答:"),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
DRCD_eval_cfg = dict(
evaluator=dict(type=EMEvaluator),
pred_role="BOT",
)
DRCD_datasets = [
dict(
type=DRCDDataset,
abbr='DRCD_dev',
path='./data/CLUE/DRCD/dev.json',
reader_cfg=DRCD_reader_cfg,
infer_cfg=DRCD_infer_cfg,
eval_cfg=DRCD_eval_cfg),
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import AFQMCDataset_V2
bustm_reader_cfg = dict(
input_columns=["sentence1", "sentence2"],
output_column="label",
test_split="train")
bustm_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
prompt=
"语句一:“{sentence1}”\n语句二:“{sentence2}”\n请判断语句一和语句二说的是否是一个意思?\nA. 无关\nB. 相关\n请从“A”,“B”中进行选择。\n答:",
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
bustm_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role="BOT",
pred_postprocessor=dict(type="first-capital"),
)
bustm_datasets = [
dict(
abbr="bustm-dev",
type=AFQMCDataset_V2, # bustm share the same format with AFQMC
path="./data/FewCLUE/bustm/dev_few_all.json",
reader_cfg=bustm_reader_cfg,
infer_cfg=bustm_infer_cfg,
eval_cfg=bustm_eval_cfg,
),
dict(
abbr="bustm-test",
type=AFQMCDataset_V2, # bustm share the same format with AFQMC
path="./data/FewCLUE/bustm/test_public.json",
reader_cfg=bustm_reader_cfg,
infer_cfg=bustm_infer_cfg,
eval_cfg=bustm_eval_cfg,
),
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CHIDDataset
chid_reader_cfg = dict(
input_columns=[f'content{i}' for i in range(7)], output_column='answer')
chid_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
i: dict(
round=[
dict(role="HUMAN", prompt=f"以下句子是否通顺?\n{{content{i}}}"),
dict(role="BOT", prompt="这个句子是通顺的。"),
], )
for i in range(7)
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
chid_eval_cfg = dict(evaluator=dict(type=AccEvaluator), pred_role="BOT")
chid_datasets = [
dict(
type=CHIDDataset,
path='json',
abbr='chid-dev',
data_files='./data/FewCLUE/chid/dev_few_all.json',
split='train',
reader_cfg=chid_reader_cfg,
infer_cfg=chid_infer_cfg,
eval_cfg=chid_eval_cfg),
dict(
type=CHIDDataset,
path='json',
abbr='chid-test',
data_files='./data/FewCLUE/chid/test_public.json',
split='train',
reader_cfg=chid_reader_cfg,
infer_cfg=chid_infer_cfg,
eval_cfg=chid_eval_cfg),
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CluewscDataset
cluewsc_reader_cfg = dict(
input_columns=['span1', 'span2', 'text', 'new_text'],
output_column='answer')
cluewsc_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0:
dict(round=[
dict(
role="HUMAN",
prompt=
"{text}\nHere, is the pronoun \"{span2}\" used to mean \"{span1}\"?"
),
dict(role="BOT", prompt="No.")
]),
1:
dict(round=[
dict(
role="HUMAN",
prompt=
"{text}\nHere, is the pronoun \"{span2}\" used to mean \"{span1}\"?"
),
dict(role="BOT", prompt="Yes.")
]),
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
cluewsc_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
cluewsc_datasets = [
dict(
type=CluewscDataset,
path='json',
abbr='cluewsc-dev',
data_files='./data/FewCLUE/cluewsc/dev_few_all.json',
split='train',
reader_cfg=cluewsc_reader_cfg,
infer_cfg=cluewsc_infer_cfg,
eval_cfg=cluewsc_eval_cfg),
dict(
type=CluewscDataset,
path='json',
abbr='cluewsc-test',
data_files='./data/FewCLUE/cluewsc/test_public.json',
split='train',
reader_cfg=cluewsc_reader_cfg,
infer_cfg=cluewsc_infer_cfg,
eval_cfg=cluewsc_eval_cfg),
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import TNewsDataset
tnews_reader_cfg = dict(input_columns='sentence', output_column='label_desc2')
tnews_labels = [
'农业新闻', '旅游新闻', '游戏新闻', '科技类别公司新闻', '体育类别新闻', '初升高教育新闻', '娱乐圈新闻', '投资资讯',
'军事类别常识', '车辆新闻', '楼市新闻', '环球不含中国类别新闻', '书籍文化历史类别新闻', '故事类别新闻', '股票市场类别新闻'
]
tnews_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
lb: dict(round=[
dict(role='HUMAN', prompt='{sentence}\n上述内容属于什么新闻?'),
dict(role='BOT', prompt=lb)
])
for lb in tnews_labels
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
tnews_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
tnews_datasets = [
dict(
type=TNewsDataset,
path='json',
abbr='tnews-dev',
data_files='./data/FewCLUE/tnews/dev_few_all.json',
split='train',
reader_cfg=tnews_reader_cfg,
infer_cfg=tnews_infer_cfg,
eval_cfg=tnews_eval_cfg),
dict(
type=TNewsDataset,
path='json',
abbr='tnews-test',
data_files='./data/FewCLUE/tnews/test_public.json',
split='train',
reader_cfg=tnews_reader_cfg,
infer_cfg=tnews_infer_cfg,
eval_cfg=tnews_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .GaokaoBench_gen_aed980 import GaokaoBench_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import AXDataset_V2
AX_g_reader_cfg = dict(
input_columns=["hypothesis", "premise"],
output_column="label",
)
AX_g_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
prompt=
"{premise}\n{hypothesis}\nIs the sentence below entailed by the sentence above?\nA. Yes\nB. No\nAnswer:"
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
AX_g_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role="BOT",
pred_postprocessor=dict(type="first-capital"),
)
AX_g_datasets = [
dict(
abbr="AX_g",
type=AXDataset_V2,
path="./data/SuperGLUE/AX-g/AX-g.jsonl",
reader_cfg=AX_g_reader_cfg,
infer_cfg=AX_g_infer_cfg,
eval_cfg=AX_g_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
AX_g_reader_cfg = dict(
input_columns=["hypothesis", "premise"],
output_column="label",
test_split="train")
AX_g_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
"entailment":
dict(round=[
dict(
role="HUMAN",
prompt=
"{premise}\n{hypothesis}\nIs the sentence below entailed by the sentence above?"
),
dict(role="BOT", prompt="Yes"),
]),
"not_entailment":
dict(round=[
dict(
role="HUMAN",
prompt=
"{premise}\n{hypothesis}\nIs the sentence below entailed by the sentence above?"
),
dict(role="BOT", prompt="No"),
])
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
AX_g_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
AX_g_datasets = [
dict(
type=HFDataset,
abbr="AX_g",
path="json",
data_files="./data/SuperGLUE/AX-g/AX-g.jsonl",
split="train",
reader_cfg=AX_g_reader_cfg,
infer_cfg=AX_g_infer_cfg,
eval_cfg=AX_g_eval_cfg,
)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_BoolQ_ppl_f80fb0 import BoolQ_datasets # noqa: F401, F403
from mmengine.config import read_base
with read_base():
from .SuperGLUE_CB_gen_bb97e1 import CB_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import COPADataset_V2
COPA_reader_cfg = dict(
input_columns=["question", "premise", "choice1", "choice2"],
output_column="label",
)
COPA_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role="HUMAN",
prompt=
"{premise}\nQuestion: Which may be the {question}?\nA. {choice1}\nB. {choice2}\nAnswer:"
),
], ),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
COPA_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role="BOT",
pred_postprocessor=dict(type="first-capital"),
)
COPA_datasets = [
dict(
abbr="COPA",
type=COPADataset_V2,
path="./data/SuperGLUE/COPA/val.jsonl",
reader_cfg=COPA_reader_cfg,
infer_cfg=COPA_infer_cfg,
eval_cfg=COPA_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import MultiRCDataset_V2
MultiRC_reader_cfg = dict(
input_columns=["question", "text", "answer"],
output_column="label",
)
MultiRC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
prompt=
"{text}\nQuestion: {question}\nAnswer: {answer}\nIs it true?\nA. Yes\nB. No\nAnswer:"
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
MultiRC_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role="BOT",
pred_postprocessor=dict(type="first-capital"),
)
MultiRC_datasets = [
dict(
abbr="MultiRC",
type=MultiRCDataset_V2,
path="./data/SuperGLUE/MultiRC/val.jsonl",
reader_cfg=MultiRC_reader_cfg,
infer_cfg=MultiRC_infer_cfg,
eval_cfg=MultiRC_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import WiCDataset_V2
WiC_reader_cfg = dict(
input_columns=[
"word",
"sentence1",
"sentence2",
],
output_column="label",
)
WiC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
prompt=
"Sentence 1: {sentence1}\nSentence 2: {sentence2}\nAre '{word}' in the above two sentenses the same?\nA. Yes\nB. No\nAnswer:"
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
WiC_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role="BOT",
pred_postprocessor=dict(type="first-capital"),
)
WiC_datasets = [
dict(
abbr="WiC",
type=WiCDataset_V2,
path="./data/SuperGLUE/WiC/val.jsonl",
reader_cfg=WiC_reader_cfg,
infer_cfg=WiC_infer_cfg,
eval_cfg=WiC_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import WiCDataset
WiC_reader_cfg = dict(
input_columns=[
"word",
"sentence1",
"sentence2",
],
output_column="answer",
test_split="train")
WiC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0:
dict(round=[
dict(
role="HUMAN",
prompt=
"Sentence 1: {sentence1}\nSentence 2: {sentence2}\n'{word}' in the above two sentenses are different."
),
]),
1:
dict(round=[
dict(
role="HUMAN",
prompt=
"Sentence 1: {sentence1}\nSentence 2: {sentence2}\n'{word}' in the above two sentenses are the same."
),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
WiC_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
WiC_datasets = [
dict(
type=WiCDataset,
abbr="WiC",
path="json",
data_files="./data/SuperGLUE/WiC/val.jsonl",
split="train",
reader_cfg=WiC_reader_cfg,
infer_cfg=WiC_infer_cfg,
eval_cfg=WiC_eval_cfg,
)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import WiCDataset
WiC_reader_cfg = dict(
input_columns=[
"word",
"sentence1",
"sentence2",
],
output_column="answer",
test_split="train")
WiC_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0:
dict(round=[
dict(
role="HUMAN",
prompt="{word} in {sentence1} and {sentence2} is different."),
]),
1:
dict(round=[
dict(role="HUMAN", prompt="{word} in {sentence1} and {sentence2} is same."),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
WiC_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
WiC_datasets = [
dict(
type=WiCDataset,
abbr="WiC",
path="json",
data_files="./data/SuperGLUE/WiC/val.jsonl",
split="train",
reader_cfg=WiC_reader_cfg,
infer_cfg=WiC_infer_cfg,
eval_cfg=WiC_eval_cfg,
)
]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment