"vscode:/vscode.git/clone" did not exist on "1ed6b7778141339074041a7c893944827b4afc5b"
Unverified Commit aa2dd2b5 authored by Fengzhe Zhou's avatar Fengzhe Zhou Committed by GitHub
Browse files

[Format] Add config lints (#892)

parent 3dbba119
......@@ -45,7 +45,7 @@ repos:
(?x)^(
dicts/|
projects/.*?/dicts/|
configs/
configs/.*?/.*\.txt
)
- id: check-yaml
- id: end-of-file-fixer
......@@ -53,11 +53,10 @@ repos:
(?x)^(
dicts/|
projects/.*?/dicts/|
configs/
configs/.*?/.*\.txt
)
- id: requirements-txt-fixer
- id: double-quote-string-fixer
exclude: configs/
- id: check-merge-conflict
- id: fix-encoding-pragma
args: ["--remove"]
......
......@@ -45,7 +45,7 @@ repos:
(?x)^(
dicts/|
projects/.*?/dicts/|
configs/
configs/.*?/.*\.txt
)
- id: check-yaml
- id: end-of-file-fixer
......@@ -53,11 +53,10 @@ repos:
(?x)^(
dicts/|
projects/.*?/dicts/|
configs/
configs/.*?/.*\.txt
)
- id: requirements-txt-fixer
- id: double-quote-string-fixer
exclude: configs/
- id: check-merge-conflict
- id: fix-encoding-pragma
args: ["--remove"]
......
......@@ -17,7 +17,7 @@ models = [
abbr='360GPT_S2_V9',
type=AI360GPT,
path='360GPT_S2_V9',
key="xxxxxxxxxxxx",
key='xxxxxxxxxxxx',
generation_kwargs={
'temperature': 0.9,
'max_tokens': 2048,
......@@ -40,4 +40,4 @@ infer = dict(
task=dict(type=OpenICLInferTask)),
)
work_dir ="./output/api_360GPT_S2_V9"
\ No newline at end of file
work_dir ='./output/api_360GPT_S2_V9'
......@@ -18,8 +18,8 @@ models = [
type=BaiChuan,
path='Baichuan2-53B',
api_key='xxxxxx',
secret_key="xxxxx",
url="xxxxx",
secret_key='xxxxx',
url='xxxxx',
generation_kwargs={
'temperature': 0.3,
'top_p': 0.85,
......@@ -41,4 +41,4 @@ infer = dict(
task=dict(type=OpenICLInferTask)),
)
work_dir = "outputs/api_baichuan53b/"
\ No newline at end of file
work_dir = 'outputs/api_baichuan53b/'
......@@ -39,4 +39,4 @@ infer = dict(
task=dict(type=OpenICLInferTask)),
)
work_dir = "outputs/api_erniebot/"
\ No newline at end of file
work_dir = 'outputs/api_erniebot/'
......@@ -18,8 +18,8 @@ models = [
abbr='skylark-pro-public',
type=ByteDance,
path='skylark-pro-public',
accesskey="xxxxxxx",
secretkey="xxxxxxx",
accesskey='xxxxxxx',
secretkey='xxxxxxx',
url='xxxxxx',
generation_kwargs={
'temperature': 0.7,
......@@ -41,4 +41,4 @@ infer = dict(
task=dict(type=OpenICLInferTask)),
)
work_dir = "outputs/api_bytedance/"
\ No newline at end of file
work_dir = 'outputs/api_bytedance/'
......@@ -34,4 +34,4 @@ infer = dict(
task=dict(type=OpenICLInferTask)),
)
work_dir = "outputs/api_minimax/"
\ No newline at end of file
work_dir = 'outputs/api_minimax/'
......@@ -37,4 +37,4 @@ infer = dict(
task=dict(type=OpenICLInferTask)),
)
work_dir = "outputs/api_moonshot/"
\ No newline at end of file
work_dir = 'outputs/api_moonshot/'
......@@ -18,7 +18,7 @@ models = [
abbr='nanbeige-plus',
type=Nanbeige,
path='nanbeige-plus',
key="xxxxxx",
key='xxxxxx',
query_per_second=1,
max_out_len=2048,
batch_size=8),
......@@ -33,4 +33,4 @@ infer = dict(
task=dict(type=OpenICLInferTask)),
)
work_dir ="./output/nanbeige-plus"
\ No newline at end of file
work_dir ='./output/nanbeige-plus'
......@@ -17,13 +17,13 @@ dict(
abbr='pangu',
type=PanGu,
path='pangu',
access_key="xxxxxx",
secret_key="xxxxxx",
url = "xxxxxx",
access_key='xxxxxx',
secret_key='xxxxxx',
url = 'xxxxxx',
# url of token sever, used for generate token, like "https://xxxxxx.myhuaweicloud.com/v3/auth/tokens",
token_url = "xxxxxx",
token_url = 'xxxxxx',
# scope-project-name, used for generate token
project_name = "xxxxxx",
project_name = 'xxxxxx',
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
......@@ -39,4 +39,4 @@ infer = dict(
task=dict(type=OpenICLInferTask)),
)
work_dir = "outputs/api_pangu/"
\ No newline at end of file
work_dir = 'outputs/api_pangu/'
......@@ -37,4 +37,4 @@ infer = dict(
task=dict(type=OpenICLInferTask)),
)
work_dir = "outputs/api_qwen/"
work_dir = 'outputs/api_qwen/'
......@@ -24,17 +24,17 @@ models = [
max_seq_len=2048,
batch_size=8,
parameters={
"temperature": 0.8,
"top_p": 0.7,
"max_new_tokens": 1024,
"repetition_penalty": 1.05,
"know_ids": [],
"stream": True,
"user": "#*#***TestUser***#*#",
"knowledge_config": {
"control_level": "normal",
"knowledge_base_result": False,
"online_search_result": False
'temperature': 0.8,
'top_p': 0.7,
'max_new_tokens': 1024,
'repetition_penalty': 1.05,
'know_ids': [],
'stream': True,
'user': '#*#***TestUser***#*#',
'knowledge_config': {
'control_level': 'normal',
'knowledge_base_result': False,
'online_search_result': False
}
}
)
......@@ -49,4 +49,4 @@ infer = dict(
task=dict(type=OpenICLInferTask)),
)
work_dir = "outputs/api_sensetime/"
\ No newline at end of file
work_dir = 'outputs/api_sensetime/'
......@@ -17,10 +17,10 @@ models = [
dict(
abbr='Spark-v1-1',
type=XunFei,
appid="xxxx",
appid='xxxx',
path='ws://spark-api.xf-yun.com/v1.1/chat',
api_secret = "xxxxxxx",
api_key = "xxxxxxx",
api_secret = 'xxxxxxx',
api_key = 'xxxxxxx',
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
......@@ -28,11 +28,11 @@ models = [
dict(
abbr='Spark-v3-1',
type=XunFei,
appid="xxxx",
appid='xxxx',
domain='generalv3',
path='ws://spark-api.xf-yun.com/v3.1/chat',
api_secret = "xxxxxxxx",
api_key = "xxxxxxxxx",
api_secret = 'xxxxxxxx',
api_key = 'xxxxxxxxx',
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
......@@ -48,4 +48,4 @@ infer = dict(
task=dict(type=OpenICLInferTask)),
)
work_dir = "outputs/api_xunfei/"
\ No newline at end of file
work_dir = 'outputs/api_xunfei/'
......@@ -29,7 +29,7 @@ models = [
abbr='chatglm_pro',
type=ZhiPuAI,
path='chatglm_pro',
key='xxxxxxxxxxxx',
key='xxxxxxxxxxxx',
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
......@@ -45,4 +45,4 @@ infer = dict(
task=dict(type=OpenICLInferTask)),
)
work_dir = "outputs/api_zhipu/"
\ No newline at end of file
work_dir = 'outputs/api_zhipu/'
......@@ -64,4 +64,4 @@ infer = dict(
task=dict(type=OpenICLInferTask)),
)
work_dir = "outputs/api_zhipu_v2/"
\ No newline at end of file
work_dir = 'outputs/api_zhipu_v2/'
......@@ -19,4 +19,4 @@ with read_base():
from ..datasets.gpqa.gpqa_gen_4baadb import gpqa_datasets
from ..datasets.IFEval.IFEval_gen_3321a3 import ifeval_datasets
datasets = sum((v for k, v in locals().items() if k.endswith("_datasets")), [])
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
......@@ -12,29 +12,29 @@ ARC_c_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
"A":
'A':
dict(
round=[
dict(role="HUMAN", prompt="Question: {question}\nAnswer: "),
dict(role="BOT", prompt="{textA}")
dict(role='HUMAN', prompt='Question: {question}\nAnswer: '),
dict(role='BOT', prompt='{textA}')
], ),
"B":
'B':
dict(
round=[
dict(role="HUMAN", prompt="Question: {question}\nAnswer: "),
dict(role="BOT", prompt="{textB}")
dict(role='HUMAN', prompt='Question: {question}\nAnswer: '),
dict(role='BOT', prompt='{textB}')
], ),
"C":
'C':
dict(
round=[
dict(role="HUMAN", prompt="Question: {question}\nAnswer: "),
dict(role="BOT", prompt="{textC}")
dict(role='HUMAN', prompt='Question: {question}\nAnswer: '),
dict(role='BOT', prompt='{textC}')
], ),
"D":
'D':
dict(
round=[
dict(role="HUMAN", prompt="Question: {question}\nAnswer: "),
dict(role="BOT", prompt="{textD}")
dict(role='HUMAN', prompt='Question: {question}\nAnswer: '),
dict(role='BOT', prompt='{textD}')
], ),
}),
retriever=dict(type=ZeroRetriever),
......
......@@ -6,8 +6,8 @@ from opencompass.datasets import ARCDataset
from opencompass.utils.text_postprocessors import first_option_postprocess
ARC_c_reader_cfg = dict(
input_columns=["question", "textA", "textB", "textC", "textD"],
output_column="answerKey")
input_columns=['question', 'textA', 'textB', 'textC', 'textD'],
output_column='answerKey')
ARC_c_infer_cfg = dict(
prompt_template=dict(
......@@ -15,9 +15,9 @@ ARC_c_infer_cfg = dict(
template=dict(
round=[
dict(
role="HUMAN",
role='HUMAN',
prompt=
"Question: {question}\nA. {textA}\nB. {textB}\nC. {textC}\nD. {textD}\nAnswer:"
'Question: {question}\nA. {textA}\nB. {textB}\nC. {textC}\nD. {textD}\nAnswer:'
)
], ),
),
......@@ -27,15 +27,15 @@ ARC_c_infer_cfg = dict(
ARC_c_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role="BOT",
pred_role='BOT',
pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'),
)
ARC_c_datasets = [
dict(
abbr="ARC-c",
abbr='ARC-c',
type=ARCDataset,
path="./data/ARC/ARC-c/ARC-Challenge-Dev.jsonl",
path='./data/ARC/ARC-c/ARC-Challenge-Dev.jsonl',
reader_cfg=ARC_c_reader_cfg,
infer_cfg=ARC_c_infer_cfg,
eval_cfg=ARC_c_eval_cfg,
......
......@@ -14,10 +14,10 @@ ARC_c_infer_cfg = dict(
template={
opt: dict(
round=[
dict(role="HUMAN", prompt=f"{{question}}\nA. {{textA}}\nB. {{textB}}\nC. {{textC}}\nD. {{textD}}"),
dict(role="BOT", prompt=f"Answer: {opt}"),
dict(role='HUMAN', prompt=f'{{question}}\nA. {{textA}}\nB. {{textB}}\nC. {{textC}}\nD. {{textD}}'),
dict(role='BOT', prompt=f'Answer: {opt}'),
]
) for opt in ["A", "B", "C", "D"]
) for opt in ['A', 'B', 'C', 'D']
},
),
retriever=dict(type=ZeroRetriever),
......
......@@ -12,29 +12,29 @@ ARC_c_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
"A":
'A':
dict(
round=[
dict(role="HUMAN", prompt="Question: {question}\nAnswer: "),
dict(role="BOT", prompt="{textA}")
dict(role='HUMAN', prompt='Question: {question}\nAnswer: '),
dict(role='BOT', prompt='{textA}')
], ),
"B":
'B':
dict(
round=[
dict(role="HUMAN", prompt="Question: {question}\nAnswer: "),
dict(role="BOT", prompt="{textB}")
dict(role='HUMAN', prompt='Question: {question}\nAnswer: '),
dict(role='BOT', prompt='{textB}')
], ),
"C":
'C':
dict(
round=[
dict(role="HUMAN", prompt="Question: {question}\nAnswer: "),
dict(role="BOT", prompt="{textC}")
dict(role='HUMAN', prompt='Question: {question}\nAnswer: '),
dict(role='BOT', prompt='{textC}')
], ),
"D":
'D':
dict(
round=[
dict(role="HUMAN", prompt="Question: {question}\nAnswer: "),
dict(role="BOT", prompt="{textD}")
dict(role='HUMAN', prompt='Question: {question}\nAnswer: '),
dict(role='BOT', prompt='{textD}')
], ),
}),
retriever=dict(type=ZeroRetriever),
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment