Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
opencompass
Commits
9083dea6
Unverified
Commit
9083dea6
authored
Nov 27, 2023
by
Fengzhe Zhou
Committed by
GitHub
Nov 27, 2023
Browse files
[Sync] some renaming (#641)
parent
68c4c1ef
Changes
28
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
892 additions
and
534 deletions
+892
-534
configs/datasets/ceval/ceval_gen_2daf24.py
configs/datasets/ceval/ceval_gen_2daf24.py
+52
-133
configs/datasets/ceval/ceval_gen_5f30c7.py
configs/datasets/ceval/ceval_gen_5f30c7.py
+52
-133
configs/datasets/ceval/ceval_ppl_578f8d.py
configs/datasets/ceval/ceval_ppl_578f8d.py
+52
-133
configs/datasets/ceval/ceval_ppl_93e5ce.py
configs/datasets/ceval/ceval_ppl_93e5ce.py
+52
-133
configs/datasets/ceval/ceval_zero_shot_gen_bd40ef.py
configs/datasets/ceval/ceval_zero_shot_gen_bd40ef.py
+105
-0
configs/datasets/commonsenseqa/commonsenseqa_ppl_c49e77.py
configs/datasets/commonsenseqa/commonsenseqa_ppl_c49e77.py
+41
-0
configs/datasets/ds1000/ds1000_gen_cbc84f.py
configs/datasets/ds1000/ds1000_gen_cbc84f.py
+2
-2
configs/datasets/ds1000/ds1000_service_eval_gen_cbc84f.py
configs/datasets/ds1000/ds1000_service_eval_gen_cbc84f.py
+67
-0
configs/datasets/hellaswag/hellaswag_ppl_7d7f2d.py
configs/datasets/hellaswag/hellaswag_ppl_7d7f2d.py
+33
-0
configs/datasets/mmlu/mmlu_zero_shot_gen_47e2c0.py
configs/datasets/mmlu/mmlu_zero_shot_gen_47e2c0.py
+123
-0
configs/models/bluelm/hf_bluelm_7b_base.py
configs/models/bluelm/hf_bluelm_7b_base.py
+24
-0
configs/models/bluelm/hf_bluelm_7b_base_32k.py
configs/models/bluelm/hf_bluelm_7b_base_32k.py
+24
-0
configs/models/bluelm/hf_bluelm_7b_chat.py
configs/models/bluelm/hf_bluelm_7b_chat.py
+32
-0
configs/models/bluelm/hf_bluelm_7b_chat_32k.py
configs/models/bluelm/hf_bluelm_7b_chat_32k.py
+32
-0
configs/models/nanbeige/hf_nanbeige_16b_base.py
configs/models/nanbeige/hf_nanbeige_16b_base.py
+33
-0
configs/models/nanbeige/hf_nanbeige_16b_base_32k.py
configs/models/nanbeige/hf_nanbeige_16b_base_32k.py
+34
-0
configs/models/nanbeige/hf_nanbeige_16b_chat.py
configs/models/nanbeige/hf_nanbeige_16b_chat.py
+34
-0
configs/models/nanbeige/hf_nanbeige_16b_chat_32k.py
configs/models/nanbeige/hf_nanbeige_16b_chat_32k.py
+34
-0
configs/models/others/hf_dolphin_21_mistral_7b.py
configs/models/others/hf_dolphin_21_mistral_7b.py
+33
-0
configs/models/others/hf_fashiongpt_70b_v11.py
configs/models/others/hf_fashiongpt_70b_v11.py
+33
-0
No files found.
configs/datasets/ceval/ceval_gen_2daf24.py
View file @
9083dea6
...
...
@@ -6,139 +6,58 @@ from opencompass.datasets import CEvalDataset
from
opencompass.utils.text_postprocessors
import
first_capital_postprocess
ceval_subject_mapping
=
{
"computer_network"
:
[
"Computer Network"
,
"
\u8ba1\u7b97\u673a\u7f51\u7edc
"
,
"STEM"
],
"operating_system"
:
[
"Operating System"
,
"
\u64cd\u4f5c\u7cfb\u7edf
"
,
"STEM"
],
"computer_architecture"
:
[
"Computer Architecture"
,
"
\u8ba1\u7b97\u673a\u7ec4\u6210
"
,
"STEM"
],
"college_programming"
:
[
"College Programming"
,
"
\u5927\u5b66\u7f16\u7a0b
"
,
"STEM"
],
"college_physics"
:
[
"College Physics"
,
"
\u5927\u5b66\u7269\u7406
"
,
"STEM"
],
"college_chemistry"
:
[
"College Chemistry"
,
"
\u5927\u5b66\u5316\u5b66
"
,
"STEM"
],
"advanced_mathematics"
:
[
"Advanced Mathematics"
,
"
\u9ad8\u7b49\u6570\u5b66
"
,
"STEM"
],
"probability_and_statistics"
:
[
"Probability and Statistics"
,
"
\u6982\u7387\u7edf\u8ba1
"
,
"STEM"
],
"discrete_mathematics"
:
[
"Discrete Mathematics"
,
"
\u79bb\u6563\u6570\u5b66
"
,
"STEM"
],
"electrical_engineer"
:
[
"Electrical Engineer"
,
"
\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08
"
,
"STEM"
],
"metrology_engineer"
:
[
"Metrology Engineer"
,
"
\u6ce8\u518c\u8ba1\u91cf\u5e08
"
,
"STEM"
],
"high_school_mathematics"
:
[
"High School Mathematics"
,
"
\u9ad8\u4e2d\u6570\u5b66
"
,
"STEM"
],
"high_school_physics"
:
[
"High School Physics"
,
"
\u9ad8\u4e2d\u7269\u7406
"
,
"STEM"
],
"high_school_chemistry"
:
[
"High School Chemistry"
,
"
\u9ad8\u4e2d\u5316\u5b66
"
,
"STEM"
],
"high_school_biology"
:
[
"High School Biology"
,
"
\u9ad8\u4e2d\u751f\u7269
"
,
"STEM"
],
"middle_school_mathematics"
:
[
"Middle School Mathematics"
,
"
\u521d\u4e2d\u6570\u5b66
"
,
"STEM"
],
"middle_school_biology"
:
[
"Middle School Biology"
,
"
\u521d\u4e2d\u751f\u7269
"
,
"STEM"
],
"middle_school_physics"
:
[
"Middle School Physics"
,
"
\u521d\u4e2d\u7269\u7406
"
,
"STEM"
],
"middle_school_chemistry"
:
[
"Middle School Chemistry"
,
"
\u521d\u4e2d\u5316\u5b66
"
,
"STEM"
],
"veterinary_medicine"
:
[
"Veterinary Medicine"
,
"
\u517d\u533b\u5b66
"
,
"STEM"
],
"college_economics"
:
[
"College Economics"
,
"
\u5927\u5b66\u7ecf\u6d4e\u5b66
"
,
"Social Science"
],
"business_administration"
:
[
"Business Administration"
,
"
\u5de5\u5546\u7ba1\u7406
"
,
"Social Science"
],
"marxism"
:
[
"Marxism"
,
"
\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406
"
,
"Social Science"
],
"mao_zedong_thought"
:
[
"Mao Zedong Thought"
,
"
\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba
"
,
"Social Science"
],
"education_science"
:
[
"Education Science"
,
"
\u6559\u80b2\u5b66
"
,
"Social Science"
],
"teacher_qualification"
:
[
"Teacher Qualification"
,
"
\u6559\u5e08\u8d44\u683c
"
,
"Social Science"
],
"high_school_politics"
:
[
"High School Politics"
,
"
\u9ad8\u4e2d\u653f\u6cbb
"
,
"Social Science"
],
"high_school_geography"
:
[
"High School Geography"
,
"
\u9ad8\u4e2d\u5730\u7406
"
,
"Social Science"
],
"middle_school_politics"
:
[
"Middle School Politics"
,
"
\u521d\u4e2d\u653f\u6cbb
"
,
"Social Science"
],
"middle_school_geography"
:
[
"Middle School Geography"
,
"
\u521d\u4e2d\u5730\u7406
"
,
"Social Science"
],
"modern_chinese_history"
:
[
"Modern Chinese History"
,
"
\u8fd1\u4ee3\u53f2\u7eb2\u8981
"
,
"Humanities"
],
"ideological_and_moral_cultivation"
:
[
"Ideological and Moral Cultivation"
,
"
\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840
"
,
"Humanities"
],
"logic"
:
[
"Logic"
,
"
\u903b\u8f91\u5b66
"
,
"Humanities"
],
"law"
:
[
"Law"
,
"
\u6cd5\u5b66
"
,
"Humanities"
],
"chinese_language_and_literature"
:
[
"Chinese Language and Literature"
,
"
\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66
"
,
"Humanities"
],
"art_studies"
:
[
"Art Studies"
,
"
\u827a\u672f\u5b66
"
,
"Humanities"
],
"professional_tour_guide"
:
[
"Professional Tour Guide"
,
"
\u5bfc\u6e38\u8d44\u683c
"
,
"Humanities"
],
"legal_professional"
:
[
"Legal Professional"
,
"
\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c
"
,
"Humanities"
],
"high_school_chinese"
:
[
"High School Chinese"
,
"
\u9ad8\u4e2d\u8bed\u6587
"
,
"Humanities"
],
"high_school_history"
:
[
"High School History"
,
"
\u9ad8\u4e2d\u5386\u53f2
"
,
"Humanities"
],
"middle_school_history"
:
[
"Middle School History"
,
"
\u521d\u4e2d\u5386\u53f2
"
,
"Humanities"
],
"civil_servant"
:
[
"Civil Servant"
,
"
\u516c\u52a1\u5458
"
,
"Other"
],
"sports_science"
:
[
"Sports Science"
,
"
\u4f53\u80b2\u5b66
"
,
"Other"
],
"plant_protection"
:
[
"Plant Protection"
,
"
\u690d\u7269\u4fdd\u62a4
"
,
"Other"
],
"basic_medicine"
:
[
"Basic Medicine"
,
"
\u57fa\u7840\u533b\u5b66
"
,
"Other"
],
"clinical_medicine"
:
[
"Clinical Medicine"
,
"
\u4e34\u5e8a\u533b\u5b66
"
,
"Other"
],
"urban_and_rural_planner"
:
[
"Urban and Rural Planner"
,
"
\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08
"
,
"Other"
],
"accountant"
:
[
"Accountant"
,
"
\u6ce8\u518c\u4f1a\u8ba1\u5e08
"
,
"Other"
],
"fire_engineer"
:
[
"Fire Engineer"
,
"
\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08
"
,
"Other"
],
"environmental_impact_assessment_engineer"
:
[
"Environmental Impact Assessment Engineer"
,
"
\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08
"
,
"Other"
],
"tax_accountant"
:
[
"Tax Accountant"
,
"
\u7a0e\u52a1\u5e08
"
,
"Other"
],
"physician"
:
[
"Physician"
,
"
\u533b\u5e08\u8d44\u683c
"
,
"Other"
]
'computer_network'
:
[
'Computer Network'
,
'计算机网络'
,
'STEM'
],
'operating_system'
:
[
'Operating System'
,
'操作系统'
,
'STEM'
],
'computer_architecture'
:
[
'Computer Architecture'
,
'计算机组成'
,
'STEM'
],
'college_programming'
:
[
'College Programming'
,
'大学编程'
,
'STEM'
],
'college_physics'
:
[
'College Physics'
,
'大学物理'
,
'STEM'
],
'college_chemistry'
:
[
'College Chemistry'
,
'大学化学'
,
'STEM'
],
'advanced_mathematics'
:
[
'Advanced Mathematics'
,
'高等数学'
,
'STEM'
],
'probability_and_statistics'
:
[
'Probability and Statistics'
,
'概率统计'
,
'STEM'
],
'discrete_mathematics'
:
[
'Discrete Mathematics'
,
'离散数学'
,
'STEM'
],
'electrical_engineer'
:
[
'Electrical Engineer'
,
'注册电气工程师'
,
'STEM'
],
'metrology_engineer'
:
[
'Metrology Engineer'
,
'注册计量师'
,
'STEM'
],
'high_school_mathematics'
:
[
'High School Mathematics'
,
'高中数学'
,
'STEM'
],
'high_school_physics'
:
[
'High School Physics'
,
'高中物理'
,
'STEM'
],
'high_school_chemistry'
:
[
'High School Chemistry'
,
'高中化学'
,
'STEM'
],
'high_school_biology'
:
[
'High School Biology'
,
'高中生物'
,
'STEM'
],
'middle_school_mathematics'
:
[
'Middle School Mathematics'
,
'初中数学'
,
'STEM'
],
'middle_school_biology'
:
[
'Middle School Biology'
,
'初中生物'
,
'STEM'
],
'middle_school_physics'
:
[
'Middle School Physics'
,
'初中物理'
,
'STEM'
],
'middle_school_chemistry'
:
[
'Middle School Chemistry'
,
'初中化学'
,
'STEM'
],
'veterinary_medicine'
:
[
'Veterinary Medicine'
,
'兽医学'
,
'STEM'
],
'college_economics'
:
[
'College Economics'
,
'大学经济学'
,
'Social Science'
],
'business_administration'
:
[
'Business Administration'
,
'工商管理'
,
'Social Science'
],
'marxism'
:
[
'Marxism'
,
'马克思主义基本原理'
,
'Social Science'
],
'mao_zedong_thought'
:
[
'Mao Zedong Thought'
,
'毛泽东思想和中国特色社会主义理论体系概论'
,
'Social Science'
],
'education_science'
:
[
'Education Science'
,
'教育学'
,
'Social Science'
],
'teacher_qualification'
:
[
'Teacher Qualification'
,
'教师资格'
,
'Social Science'
],
'high_school_politics'
:
[
'High School Politics'
,
'高中政治'
,
'Social Science'
],
'high_school_geography'
:
[
'High School Geography'
,
'高中地理'
,
'Social Science'
],
'middle_school_politics'
:
[
'Middle School Politics'
,
'初中政治'
,
'Social Science'
],
'middle_school_geography'
:
[
'Middle School Geography'
,
'初中地理'
,
'Social Science'
],
'modern_chinese_history'
:
[
'Modern Chinese History'
,
'近代史纲要'
,
'Humanities'
],
'ideological_and_moral_cultivation'
:
[
'Ideological and Moral Cultivation'
,
'思想道德修养与法律基础'
,
'Humanities'
],
'logic'
:
[
'Logic'
,
'逻辑学'
,
'Humanities'
],
'law'
:
[
'Law'
,
'法学'
,
'Humanities'
],
'chinese_language_and_literature'
:
[
'Chinese Language and Literature'
,
'中国语言文学'
,
'Humanities'
],
'art_studies'
:
[
'Art Studies'
,
'艺术学'
,
'Humanities'
],
'professional_tour_guide'
:
[
'Professional Tour Guide'
,
'导游资格'
,
'Humanities'
],
'legal_professional'
:
[
'Legal Professional'
,
'法律职业资格'
,
'Humanities'
],
'high_school_chinese'
:
[
'High School Chinese'
,
'高中语文'
,
'Humanities'
],
'high_school_history'
:
[
'High School History'
,
'高中历史'
,
'Humanities'
],
'middle_school_history'
:
[
'Middle School History'
,
'初中历史'
,
'Humanities'
],
'civil_servant'
:
[
'Civil Servant'
,
'公务员'
,
'Other'
],
'sports_science'
:
[
'Sports Science'
,
'体育学'
,
'Other'
],
'plant_protection'
:
[
'Plant Protection'
,
'植物保护'
,
'Other'
],
'basic_medicine'
:
[
'Basic Medicine'
,
'基础医学'
,
'Other'
],
'clinical_medicine'
:
[
'Clinical Medicine'
,
'临床医学'
,
'Other'
],
'urban_and_rural_planner'
:
[
'Urban and Rural Planner'
,
'注册城乡规划师'
,
'Other'
],
'accountant'
:
[
'Accountant'
,
'注册会计师'
,
'Other'
],
'fire_engineer'
:
[
'Fire Engineer'
,
'注册消防工程师'
,
'Other'
],
'environmental_impact_assessment_engineer'
:
[
'Environmental Impact Assessment Engineer'
,
'环境影响评价工程师'
,
'Other'
],
'tax_accountant'
:
[
'Tax Accountant'
,
'税务师'
,
'Other'
],
'physician'
:
[
'Physician'
,
'医师资格'
,
'Other'
],
}
ceval_all_sets
=
list
(
ceval_subject_mapping
.
keys
())
...
...
configs/datasets/ceval/ceval_gen_5f30c7.py
View file @
9083dea6
...
...
@@ -6,139 +6,58 @@ from opencompass.datasets import CEvalDataset
from
opencompass.utils.text_postprocessors
import
first_capital_postprocess
ceval_subject_mapping
=
{
"computer_network"
:
[
"Computer Network"
,
"
\u8ba1\u7b97\u673a\u7f51\u7edc
"
,
"STEM"
],
"operating_system"
:
[
"Operating System"
,
"
\u64cd\u4f5c\u7cfb\u7edf
"
,
"STEM"
],
"computer_architecture"
:
[
"Computer Architecture"
,
"
\u8ba1\u7b97\u673a\u7ec4\u6210
"
,
"STEM"
],
"college_programming"
:
[
"College Programming"
,
"
\u5927\u5b66\u7f16\u7a0b
"
,
"STEM"
],
"college_physics"
:
[
"College Physics"
,
"
\u5927\u5b66\u7269\u7406
"
,
"STEM"
],
"college_chemistry"
:
[
"College Chemistry"
,
"
\u5927\u5b66\u5316\u5b66
"
,
"STEM"
],
"advanced_mathematics"
:
[
"Advanced Mathematics"
,
"
\u9ad8\u7b49\u6570\u5b66
"
,
"STEM"
],
"probability_and_statistics"
:
[
"Probability and Statistics"
,
"
\u6982\u7387\u7edf\u8ba1
"
,
"STEM"
],
"discrete_mathematics"
:
[
"Discrete Mathematics"
,
"
\u79bb\u6563\u6570\u5b66
"
,
"STEM"
],
"electrical_engineer"
:
[
"Electrical Engineer"
,
"
\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08
"
,
"STEM"
],
"metrology_engineer"
:
[
"Metrology Engineer"
,
"
\u6ce8\u518c\u8ba1\u91cf\u5e08
"
,
"STEM"
],
"high_school_mathematics"
:
[
"High School Mathematics"
,
"
\u9ad8\u4e2d\u6570\u5b66
"
,
"STEM"
],
"high_school_physics"
:
[
"High School Physics"
,
"
\u9ad8\u4e2d\u7269\u7406
"
,
"STEM"
],
"high_school_chemistry"
:
[
"High School Chemistry"
,
"
\u9ad8\u4e2d\u5316\u5b66
"
,
"STEM"
],
"high_school_biology"
:
[
"High School Biology"
,
"
\u9ad8\u4e2d\u751f\u7269
"
,
"STEM"
],
"middle_school_mathematics"
:
[
"Middle School Mathematics"
,
"
\u521d\u4e2d\u6570\u5b66
"
,
"STEM"
],
"middle_school_biology"
:
[
"Middle School Biology"
,
"
\u521d\u4e2d\u751f\u7269
"
,
"STEM"
],
"middle_school_physics"
:
[
"Middle School Physics"
,
"
\u521d\u4e2d\u7269\u7406
"
,
"STEM"
],
"middle_school_chemistry"
:
[
"Middle School Chemistry"
,
"
\u521d\u4e2d\u5316\u5b66
"
,
"STEM"
],
"veterinary_medicine"
:
[
"Veterinary Medicine"
,
"
\u517d\u533b\u5b66
"
,
"STEM"
],
"college_economics"
:
[
"College Economics"
,
"
\u5927\u5b66\u7ecf\u6d4e\u5b66
"
,
"Social Science"
],
"business_administration"
:
[
"Business Administration"
,
"
\u5de5\u5546\u7ba1\u7406
"
,
"Social Science"
],
"marxism"
:
[
"Marxism"
,
"
\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406
"
,
"Social Science"
],
"mao_zedong_thought"
:
[
"Mao Zedong Thought"
,
"
\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba
"
,
"Social Science"
],
"education_science"
:
[
"Education Science"
,
"
\u6559\u80b2\u5b66
"
,
"Social Science"
],
"teacher_qualification"
:
[
"Teacher Qualification"
,
"
\u6559\u5e08\u8d44\u683c
"
,
"Social Science"
],
"high_school_politics"
:
[
"High School Politics"
,
"
\u9ad8\u4e2d\u653f\u6cbb
"
,
"Social Science"
],
"high_school_geography"
:
[
"High School Geography"
,
"
\u9ad8\u4e2d\u5730\u7406
"
,
"Social Science"
],
"middle_school_politics"
:
[
"Middle School Politics"
,
"
\u521d\u4e2d\u653f\u6cbb
"
,
"Social Science"
],
"middle_school_geography"
:
[
"Middle School Geography"
,
"
\u521d\u4e2d\u5730\u7406
"
,
"Social Science"
],
"modern_chinese_history"
:
[
"Modern Chinese History"
,
"
\u8fd1\u4ee3\u53f2\u7eb2\u8981
"
,
"Humanities"
],
"ideological_and_moral_cultivation"
:
[
"Ideological and Moral Cultivation"
,
"
\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840
"
,
"Humanities"
],
"logic"
:
[
"Logic"
,
"
\u903b\u8f91\u5b66
"
,
"Humanities"
],
"law"
:
[
"Law"
,
"
\u6cd5\u5b66
"
,
"Humanities"
],
"chinese_language_and_literature"
:
[
"Chinese Language and Literature"
,
"
\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66
"
,
"Humanities"
],
"art_studies"
:
[
"Art Studies"
,
"
\u827a\u672f\u5b66
"
,
"Humanities"
],
"professional_tour_guide"
:
[
"Professional Tour Guide"
,
"
\u5bfc\u6e38\u8d44\u683c
"
,
"Humanities"
],
"legal_professional"
:
[
"Legal Professional"
,
"
\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c
"
,
"Humanities"
],
"high_school_chinese"
:
[
"High School Chinese"
,
"
\u9ad8\u4e2d\u8bed\u6587
"
,
"Humanities"
],
"high_school_history"
:
[
"High School History"
,
"
\u9ad8\u4e2d\u5386\u53f2
"
,
"Humanities"
],
"middle_school_history"
:
[
"Middle School History"
,
"
\u521d\u4e2d\u5386\u53f2
"
,
"Humanities"
],
"civil_servant"
:
[
"Civil Servant"
,
"
\u516c\u52a1\u5458
"
,
"Other"
],
"sports_science"
:
[
"Sports Science"
,
"
\u4f53\u80b2\u5b66
"
,
"Other"
],
"plant_protection"
:
[
"Plant Protection"
,
"
\u690d\u7269\u4fdd\u62a4
"
,
"Other"
],
"basic_medicine"
:
[
"Basic Medicine"
,
"
\u57fa\u7840\u533b\u5b66
"
,
"Other"
],
"clinical_medicine"
:
[
"Clinical Medicine"
,
"
\u4e34\u5e8a\u533b\u5b66
"
,
"Other"
],
"urban_and_rural_planner"
:
[
"Urban and Rural Planner"
,
"
\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08
"
,
"Other"
],
"accountant"
:
[
"Accountant"
,
"
\u6ce8\u518c\u4f1a\u8ba1\u5e08
"
,
"Other"
],
"fire_engineer"
:
[
"Fire Engineer"
,
"
\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08
"
,
"Other"
],
"environmental_impact_assessment_engineer"
:
[
"Environmental Impact Assessment Engineer"
,
"
\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08
"
,
"Other"
],
"tax_accountant"
:
[
"Tax Accountant"
,
"
\u7a0e\u52a1\u5e08
"
,
"Other"
],
"physician"
:
[
"Physician"
,
"
\u533b\u5e08\u8d44\u683c
"
,
"Other"
]
'computer_network'
:
[
'Computer Network'
,
'计算机网络'
,
'STEM'
],
'operating_system'
:
[
'Operating System'
,
'操作系统'
,
'STEM'
],
'computer_architecture'
:
[
'Computer Architecture'
,
'计算机组成'
,
'STEM'
],
'college_programming'
:
[
'College Programming'
,
'大学编程'
,
'STEM'
],
'college_physics'
:
[
'College Physics'
,
'大学物理'
,
'STEM'
],
'college_chemistry'
:
[
'College Chemistry'
,
'大学化学'
,
'STEM'
],
'advanced_mathematics'
:
[
'Advanced Mathematics'
,
'高等数学'
,
'STEM'
],
'probability_and_statistics'
:
[
'Probability and Statistics'
,
'概率统计'
,
'STEM'
],
'discrete_mathematics'
:
[
'Discrete Mathematics'
,
'离散数学'
,
'STEM'
],
'electrical_engineer'
:
[
'Electrical Engineer'
,
'注册电气工程师'
,
'STEM'
],
'metrology_engineer'
:
[
'Metrology Engineer'
,
'注册计量师'
,
'STEM'
],
'high_school_mathematics'
:
[
'High School Mathematics'
,
'高中数学'
,
'STEM'
],
'high_school_physics'
:
[
'High School Physics'
,
'高中物理'
,
'STEM'
],
'high_school_chemistry'
:
[
'High School Chemistry'
,
'高中化学'
,
'STEM'
],
'high_school_biology'
:
[
'High School Biology'
,
'高中生物'
,
'STEM'
],
'middle_school_mathematics'
:
[
'Middle School Mathematics'
,
'初中数学'
,
'STEM'
],
'middle_school_biology'
:
[
'Middle School Biology'
,
'初中生物'
,
'STEM'
],
'middle_school_physics'
:
[
'Middle School Physics'
,
'初中物理'
,
'STEM'
],
'middle_school_chemistry'
:
[
'Middle School Chemistry'
,
'初中化学'
,
'STEM'
],
'veterinary_medicine'
:
[
'Veterinary Medicine'
,
'兽医学'
,
'STEM'
],
'college_economics'
:
[
'College Economics'
,
'大学经济学'
,
'Social Science'
],
'business_administration'
:
[
'Business Administration'
,
'工商管理'
,
'Social Science'
],
'marxism'
:
[
'Marxism'
,
'马克思主义基本原理'
,
'Social Science'
],
'mao_zedong_thought'
:
[
'Mao Zedong Thought'
,
'毛泽东思想和中国特色社会主义理论体系概论'
,
'Social Science'
],
'education_science'
:
[
'Education Science'
,
'教育学'
,
'Social Science'
],
'teacher_qualification'
:
[
'Teacher Qualification'
,
'教师资格'
,
'Social Science'
],
'high_school_politics'
:
[
'High School Politics'
,
'高中政治'
,
'Social Science'
],
'high_school_geography'
:
[
'High School Geography'
,
'高中地理'
,
'Social Science'
],
'middle_school_politics'
:
[
'Middle School Politics'
,
'初中政治'
,
'Social Science'
],
'middle_school_geography'
:
[
'Middle School Geography'
,
'初中地理'
,
'Social Science'
],
'modern_chinese_history'
:
[
'Modern Chinese History'
,
'近代史纲要'
,
'Humanities'
],
'ideological_and_moral_cultivation'
:
[
'Ideological and Moral Cultivation'
,
'思想道德修养与法律基础'
,
'Humanities'
],
'logic'
:
[
'Logic'
,
'逻辑学'
,
'Humanities'
],
'law'
:
[
'Law'
,
'法学'
,
'Humanities'
],
'chinese_language_and_literature'
:
[
'Chinese Language and Literature'
,
'中国语言文学'
,
'Humanities'
],
'art_studies'
:
[
'Art Studies'
,
'艺术学'
,
'Humanities'
],
'professional_tour_guide'
:
[
'Professional Tour Guide'
,
'导游资格'
,
'Humanities'
],
'legal_professional'
:
[
'Legal Professional'
,
'法律职业资格'
,
'Humanities'
],
'high_school_chinese'
:
[
'High School Chinese'
,
'高中语文'
,
'Humanities'
],
'high_school_history'
:
[
'High School History'
,
'高中历史'
,
'Humanities'
],
'middle_school_history'
:
[
'Middle School History'
,
'初中历史'
,
'Humanities'
],
'civil_servant'
:
[
'Civil Servant'
,
'公务员'
,
'Other'
],
'sports_science'
:
[
'Sports Science'
,
'体育学'
,
'Other'
],
'plant_protection'
:
[
'Plant Protection'
,
'植物保护'
,
'Other'
],
'basic_medicine'
:
[
'Basic Medicine'
,
'基础医学'
,
'Other'
],
'clinical_medicine'
:
[
'Clinical Medicine'
,
'临床医学'
,
'Other'
],
'urban_and_rural_planner'
:
[
'Urban and Rural Planner'
,
'注册城乡规划师'
,
'Other'
],
'accountant'
:
[
'Accountant'
,
'注册会计师'
,
'Other'
],
'fire_engineer'
:
[
'Fire Engineer'
,
'注册消防工程师'
,
'Other'
],
'environmental_impact_assessment_engineer'
:
[
'Environmental Impact Assessment Engineer'
,
'环境影响评价工程师'
,
'Other'
],
'tax_accountant'
:
[
'Tax Accountant'
,
'税务师'
,
'Other'
],
'physician'
:
[
'Physician'
,
'医师资格'
,
'Other'
],
}
ceval_all_sets
=
list
(
ceval_subject_mapping
.
keys
())
...
...
configs/datasets/ceval/ceval_ppl_578f8d.py
View file @
9083dea6
...
...
@@ -5,139 +5,58 @@ from opencompass.openicl.icl_evaluator import AccEvaluator
from
opencompass.datasets
import
CEvalDataset
ceval_subject_mapping
=
{
"computer_network"
:
[
"Computer Network"
,
"
\u8ba1\u7b97\u673a\u7f51\u7edc
"
,
"STEM"
],
"operating_system"
:
[
"Operating System"
,
"
\u64cd\u4f5c\u7cfb\u7edf
"
,
"STEM"
],
"computer_architecture"
:
[
"Computer Architecture"
,
"
\u8ba1\u7b97\u673a\u7ec4\u6210
"
,
"STEM"
],
"college_programming"
:
[
"College Programming"
,
"
\u5927\u5b66\u7f16\u7a0b
"
,
"STEM"
],
"college_physics"
:
[
"College Physics"
,
"
\u5927\u5b66\u7269\u7406
"
,
"STEM"
],
"college_chemistry"
:
[
"College Chemistry"
,
"
\u5927\u5b66\u5316\u5b66
"
,
"STEM"
],
"advanced_mathematics"
:
[
"Advanced Mathematics"
,
"
\u9ad8\u7b49\u6570\u5b66
"
,
"STEM"
],
"probability_and_statistics"
:
[
"Probability and Statistics"
,
"
\u6982\u7387\u7edf\u8ba1
"
,
"STEM"
],
"discrete_mathematics"
:
[
"Discrete Mathematics"
,
"
\u79bb\u6563\u6570\u5b66
"
,
"STEM"
],
"electrical_engineer"
:
[
"Electrical Engineer"
,
"
\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08
"
,
"STEM"
],
"metrology_engineer"
:
[
"Metrology Engineer"
,
"
\u6ce8\u518c\u8ba1\u91cf\u5e08
"
,
"STEM"
],
"high_school_mathematics"
:
[
"High School Mathematics"
,
"
\u9ad8\u4e2d\u6570\u5b66
"
,
"STEM"
],
"high_school_physics"
:
[
"High School Physics"
,
"
\u9ad8\u4e2d\u7269\u7406
"
,
"STEM"
],
"high_school_chemistry"
:
[
"High School Chemistry"
,
"
\u9ad8\u4e2d\u5316\u5b66
"
,
"STEM"
],
"high_school_biology"
:
[
"High School Biology"
,
"
\u9ad8\u4e2d\u751f\u7269
"
,
"STEM"
],
"middle_school_mathematics"
:
[
"Middle School Mathematics"
,
"
\u521d\u4e2d\u6570\u5b66
"
,
"STEM"
],
"middle_school_biology"
:
[
"Middle School Biology"
,
"
\u521d\u4e2d\u751f\u7269
"
,
"STEM"
],
"middle_school_physics"
:
[
"Middle School Physics"
,
"
\u521d\u4e2d\u7269\u7406
"
,
"STEM"
],
"middle_school_chemistry"
:
[
"Middle School Chemistry"
,
"
\u521d\u4e2d\u5316\u5b66
"
,
"STEM"
],
"veterinary_medicine"
:
[
"Veterinary Medicine"
,
"
\u517d\u533b\u5b66
"
,
"STEM"
],
"college_economics"
:
[
"College Economics"
,
"
\u5927\u5b66\u7ecf\u6d4e\u5b66
"
,
"Social Science"
],
"business_administration"
:
[
"Business Administration"
,
"
\u5de5\u5546\u7ba1\u7406
"
,
"Social Science"
],
"marxism"
:
[
"Marxism"
,
"
\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406
"
,
"Social Science"
],
"mao_zedong_thought"
:
[
"Mao Zedong Thought"
,
"
\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba
"
,
"Social Science"
],
"education_science"
:
[
"Education Science"
,
"
\u6559\u80b2\u5b66
"
,
"Social Science"
],
"teacher_qualification"
:
[
"Teacher Qualification"
,
"
\u6559\u5e08\u8d44\u683c
"
,
"Social Science"
],
"high_school_politics"
:
[
"High School Politics"
,
"
\u9ad8\u4e2d\u653f\u6cbb
"
,
"Social Science"
],
"high_school_geography"
:
[
"High School Geography"
,
"
\u9ad8\u4e2d\u5730\u7406
"
,
"Social Science"
],
"middle_school_politics"
:
[
"Middle School Politics"
,
"
\u521d\u4e2d\u653f\u6cbb
"
,
"Social Science"
],
"middle_school_geography"
:
[
"Middle School Geography"
,
"
\u521d\u4e2d\u5730\u7406
"
,
"Social Science"
],
"modern_chinese_history"
:
[
"Modern Chinese History"
,
"
\u8fd1\u4ee3\u53f2\u7eb2\u8981
"
,
"Humanities"
],
"ideological_and_moral_cultivation"
:
[
"Ideological and Moral Cultivation"
,
"
\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840
"
,
"Humanities"
],
"logic"
:
[
"Logic"
,
"
\u903b\u8f91\u5b66
"
,
"Humanities"
],
"law"
:
[
"Law"
,
"
\u6cd5\u5b66
"
,
"Humanities"
],
"chinese_language_and_literature"
:
[
"Chinese Language and Literature"
,
"
\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66
"
,
"Humanities"
],
"art_studies"
:
[
"Art Studies"
,
"
\u827a\u672f\u5b66
"
,
"Humanities"
],
"professional_tour_guide"
:
[
"Professional Tour Guide"
,
"
\u5bfc\u6e38\u8d44\u683c
"
,
"Humanities"
],
"legal_professional"
:
[
"Legal Professional"
,
"
\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c
"
,
"Humanities"
],
"high_school_chinese"
:
[
"High School Chinese"
,
"
\u9ad8\u4e2d\u8bed\u6587
"
,
"Humanities"
],
"high_school_history"
:
[
"High School History"
,
"
\u9ad8\u4e2d\u5386\u53f2
"
,
"Humanities"
],
"middle_school_history"
:
[
"Middle School History"
,
"
\u521d\u4e2d\u5386\u53f2
"
,
"Humanities"
],
"civil_servant"
:
[
"Civil Servant"
,
"
\u516c\u52a1\u5458
"
,
"Other"
],
"sports_science"
:
[
"Sports Science"
,
"
\u4f53\u80b2\u5b66
"
,
"Other"
],
"plant_protection"
:
[
"Plant Protection"
,
"
\u690d\u7269\u4fdd\u62a4
"
,
"Other"
],
"basic_medicine"
:
[
"Basic Medicine"
,
"
\u57fa\u7840\u533b\u5b66
"
,
"Other"
],
"clinical_medicine"
:
[
"Clinical Medicine"
,
"
\u4e34\u5e8a\u533b\u5b66
"
,
"Other"
],
"urban_and_rural_planner"
:
[
"Urban and Rural Planner"
,
"
\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08
"
,
"Other"
],
"accountant"
:
[
"Accountant"
,
"
\u6ce8\u518c\u4f1a\u8ba1\u5e08
"
,
"Other"
],
"fire_engineer"
:
[
"Fire Engineer"
,
"
\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08
"
,
"Other"
],
"environmental_impact_assessment_engineer"
:
[
"Environmental Impact Assessment Engineer"
,
"
\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08
"
,
"Other"
],
"tax_accountant"
:
[
"Tax Accountant"
,
"
\u7a0e\u52a1\u5e08
"
,
"Other"
],
"physician"
:
[
"Physician"
,
"
\u533b\u5e08\u8d44\u683c
"
,
"Other"
]
'computer_network'
:
[
'Computer Network'
,
'计算机网络'
,
'STEM'
],
'operating_system'
:
[
'Operating System'
,
'操作系统'
,
'STEM'
],
'computer_architecture'
:
[
'Computer Architecture'
,
'计算机组成'
,
'STEM'
],
'college_programming'
:
[
'College Programming'
,
'大学编程'
,
'STEM'
],
'college_physics'
:
[
'College Physics'
,
'大学物理'
,
'STEM'
],
'college_chemistry'
:
[
'College Chemistry'
,
'大学化学'
,
'STEM'
],
'advanced_mathematics'
:
[
'Advanced Mathematics'
,
'高等数学'
,
'STEM'
],
'probability_and_statistics'
:
[
'Probability and Statistics'
,
'概率统计'
,
'STEM'
],
'discrete_mathematics'
:
[
'Discrete Mathematics'
,
'离散数学'
,
'STEM'
],
'electrical_engineer'
:
[
'Electrical Engineer'
,
'注册电气工程师'
,
'STEM'
],
'metrology_engineer'
:
[
'Metrology Engineer'
,
'注册计量师'
,
'STEM'
],
'high_school_mathematics'
:
[
'High School Mathematics'
,
'高中数学'
,
'STEM'
],
'high_school_physics'
:
[
'High School Physics'
,
'高中物理'
,
'STEM'
],
'high_school_chemistry'
:
[
'High School Chemistry'
,
'高中化学'
,
'STEM'
],
'high_school_biology'
:
[
'High School Biology'
,
'高中生物'
,
'STEM'
],
'middle_school_mathematics'
:
[
'Middle School Mathematics'
,
'初中数学'
,
'STEM'
],
'middle_school_biology'
:
[
'Middle School Biology'
,
'初中生物'
,
'STEM'
],
'middle_school_physics'
:
[
'Middle School Physics'
,
'初中物理'
,
'STEM'
],
'middle_school_chemistry'
:
[
'Middle School Chemistry'
,
'初中化学'
,
'STEM'
],
'veterinary_medicine'
:
[
'Veterinary Medicine'
,
'兽医学'
,
'STEM'
],
'college_economics'
:
[
'College Economics'
,
'大学经济学'
,
'Social Science'
],
'business_administration'
:
[
'Business Administration'
,
'工商管理'
,
'Social Science'
],
'marxism'
:
[
'Marxism'
,
'马克思主义基本原理'
,
'Social Science'
],
'mao_zedong_thought'
:
[
'Mao Zedong Thought'
,
'毛泽东思想和中国特色社会主义理论体系概论'
,
'Social Science'
],
'education_science'
:
[
'Education Science'
,
'教育学'
,
'Social Science'
],
'teacher_qualification'
:
[
'Teacher Qualification'
,
'教师资格'
,
'Social Science'
],
'high_school_politics'
:
[
'High School Politics'
,
'高中政治'
,
'Social Science'
],
'high_school_geography'
:
[
'High School Geography'
,
'高中地理'
,
'Social Science'
],
'middle_school_politics'
:
[
'Middle School Politics'
,
'初中政治'
,
'Social Science'
],
'middle_school_geography'
:
[
'Middle School Geography'
,
'初中地理'
,
'Social Science'
],
'modern_chinese_history'
:
[
'Modern Chinese History'
,
'近代史纲要'
,
'Humanities'
],
'ideological_and_moral_cultivation'
:
[
'Ideological and Moral Cultivation'
,
'思想道德修养与法律基础'
,
'Humanities'
],
'logic'
:
[
'Logic'
,
'逻辑学'
,
'Humanities'
],
'law'
:
[
'Law'
,
'法学'
,
'Humanities'
],
'chinese_language_and_literature'
:
[
'Chinese Language and Literature'
,
'中国语言文学'
,
'Humanities'
],
'art_studies'
:
[
'Art Studies'
,
'艺术学'
,
'Humanities'
],
'professional_tour_guide'
:
[
'Professional Tour Guide'
,
'导游资格'
,
'Humanities'
],
'legal_professional'
:
[
'Legal Professional'
,
'法律职业资格'
,
'Humanities'
],
'high_school_chinese'
:
[
'High School Chinese'
,
'高中语文'
,
'Humanities'
],
'high_school_history'
:
[
'High School History'
,
'高中历史'
,
'Humanities'
],
'middle_school_history'
:
[
'Middle School History'
,
'初中历史'
,
'Humanities'
],
'civil_servant'
:
[
'Civil Servant'
,
'公务员'
,
'Other'
],
'sports_science'
:
[
'Sports Science'
,
'体育学'
,
'Other'
],
'plant_protection'
:
[
'Plant Protection'
,
'植物保护'
,
'Other'
],
'basic_medicine'
:
[
'Basic Medicine'
,
'基础医学'
,
'Other'
],
'clinical_medicine'
:
[
'Clinical Medicine'
,
'临床医学'
,
'Other'
],
'urban_and_rural_planner'
:
[
'Urban and Rural Planner'
,
'注册城乡规划师'
,
'Other'
],
'accountant'
:
[
'Accountant'
,
'注册会计师'
,
'Other'
],
'fire_engineer'
:
[
'Fire Engineer'
,
'注册消防工程师'
,
'Other'
],
'environmental_impact_assessment_engineer'
:
[
'Environmental Impact Assessment Engineer'
,
'环境影响评价工程师'
,
'Other'
],
'tax_accountant'
:
[
'Tax Accountant'
,
'税务师'
,
'Other'
],
'physician'
:
[
'Physician'
,
'医师资格'
,
'Other'
],
}
ceval_all_sets
=
list
(
ceval_subject_mapping
.
keys
())
...
...
configs/datasets/ceval/ceval_ppl_93e5ce.py
View file @
9083dea6
...
...
@@ -5,139 +5,58 @@ from opencompass.openicl.icl_evaluator import AccEvaluator
from
opencompass.datasets
import
CEvalDataset
ceval_subject_mapping
=
{
"computer_network"
:
[
"Computer Network"
,
"
\u8ba1\u7b97\u673a\u7f51\u7edc
"
,
"STEM"
],
"operating_system"
:
[
"Operating System"
,
"
\u64cd\u4f5c\u7cfb\u7edf
"
,
"STEM"
],
"computer_architecture"
:
[
"Computer Architecture"
,
"
\u8ba1\u7b97\u673a\u7ec4\u6210
"
,
"STEM"
],
"college_programming"
:
[
"College Programming"
,
"
\u5927\u5b66\u7f16\u7a0b
"
,
"STEM"
],
"college_physics"
:
[
"College Physics"
,
"
\u5927\u5b66\u7269\u7406
"
,
"STEM"
],
"college_chemistry"
:
[
"College Chemistry"
,
"
\u5927\u5b66\u5316\u5b66
"
,
"STEM"
],
"advanced_mathematics"
:
[
"Advanced Mathematics"
,
"
\u9ad8\u7b49\u6570\u5b66
"
,
"STEM"
],
"probability_and_statistics"
:
[
"Probability and Statistics"
,
"
\u6982\u7387\u7edf\u8ba1
"
,
"STEM"
],
"discrete_mathematics"
:
[
"Discrete Mathematics"
,
"
\u79bb\u6563\u6570\u5b66
"
,
"STEM"
],
"electrical_engineer"
:
[
"Electrical Engineer"
,
"
\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08
"
,
"STEM"
],
"metrology_engineer"
:
[
"Metrology Engineer"
,
"
\u6ce8\u518c\u8ba1\u91cf\u5e08
"
,
"STEM"
],
"high_school_mathematics"
:
[
"High School Mathematics"
,
"
\u9ad8\u4e2d\u6570\u5b66
"
,
"STEM"
],
"high_school_physics"
:
[
"High School Physics"
,
"
\u9ad8\u4e2d\u7269\u7406
"
,
"STEM"
],
"high_school_chemistry"
:
[
"High School Chemistry"
,
"
\u9ad8\u4e2d\u5316\u5b66
"
,
"STEM"
],
"high_school_biology"
:
[
"High School Biology"
,
"
\u9ad8\u4e2d\u751f\u7269
"
,
"STEM"
],
"middle_school_mathematics"
:
[
"Middle School Mathematics"
,
"
\u521d\u4e2d\u6570\u5b66
"
,
"STEM"
],
"middle_school_biology"
:
[
"Middle School Biology"
,
"
\u521d\u4e2d\u751f\u7269
"
,
"STEM"
],
"middle_school_physics"
:
[
"Middle School Physics"
,
"
\u521d\u4e2d\u7269\u7406
"
,
"STEM"
],
"middle_school_chemistry"
:
[
"Middle School Chemistry"
,
"
\u521d\u4e2d\u5316\u5b66
"
,
"STEM"
],
"veterinary_medicine"
:
[
"Veterinary Medicine"
,
"
\u517d\u533b\u5b66
"
,
"STEM"
],
"college_economics"
:
[
"College Economics"
,
"
\u5927\u5b66\u7ecf\u6d4e\u5b66
"
,
"Social Science"
],
"business_administration"
:
[
"Business Administration"
,
"
\u5de5\u5546\u7ba1\u7406
"
,
"Social Science"
],
"marxism"
:
[
"Marxism"
,
"
\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406
"
,
"Social Science"
],
"mao_zedong_thought"
:
[
"Mao Zedong Thought"
,
"
\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba
"
,
"Social Science"
],
"education_science"
:
[
"Education Science"
,
"
\u6559\u80b2\u5b66
"
,
"Social Science"
],
"teacher_qualification"
:
[
"Teacher Qualification"
,
"
\u6559\u5e08\u8d44\u683c
"
,
"Social Science"
],
"high_school_politics"
:
[
"High School Politics"
,
"
\u9ad8\u4e2d\u653f\u6cbb
"
,
"Social Science"
],
"high_school_geography"
:
[
"High School Geography"
,
"
\u9ad8\u4e2d\u5730\u7406
"
,
"Social Science"
],
"middle_school_politics"
:
[
"Middle School Politics"
,
"
\u521d\u4e2d\u653f\u6cbb
"
,
"Social Science"
],
"middle_school_geography"
:
[
"Middle School Geography"
,
"
\u521d\u4e2d\u5730\u7406
"
,
"Social Science"
],
"modern_chinese_history"
:
[
"Modern Chinese History"
,
"
\u8fd1\u4ee3\u53f2\u7eb2\u8981
"
,
"Humanities"
],
"ideological_and_moral_cultivation"
:
[
"Ideological and Moral Cultivation"
,
"
\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840
"
,
"Humanities"
],
"logic"
:
[
"Logic"
,
"
\u903b\u8f91\u5b66
"
,
"Humanities"
],
"law"
:
[
"Law"
,
"
\u6cd5\u5b66
"
,
"Humanities"
],
"chinese_language_and_literature"
:
[
"Chinese Language and Literature"
,
"
\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66
"
,
"Humanities"
],
"art_studies"
:
[
"Art Studies"
,
"
\u827a\u672f\u5b66
"
,
"Humanities"
],
"professional_tour_guide"
:
[
"Professional Tour Guide"
,
"
\u5bfc\u6e38\u8d44\u683c
"
,
"Humanities"
],
"legal_professional"
:
[
"Legal Professional"
,
"
\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c
"
,
"Humanities"
],
"high_school_chinese"
:
[
"High School Chinese"
,
"
\u9ad8\u4e2d\u8bed\u6587
"
,
"Humanities"
],
"high_school_history"
:
[
"High School History"
,
"
\u9ad8\u4e2d\u5386\u53f2
"
,
"Humanities"
],
"middle_school_history"
:
[
"Middle School History"
,
"
\u521d\u4e2d\u5386\u53f2
"
,
"Humanities"
],
"civil_servant"
:
[
"Civil Servant"
,
"
\u516c\u52a1\u5458
"
,
"Other"
],
"sports_science"
:
[
"Sports Science"
,
"
\u4f53\u80b2\u5b66
"
,
"Other"
],
"plant_protection"
:
[
"Plant Protection"
,
"
\u690d\u7269\u4fdd\u62a4
"
,
"Other"
],
"basic_medicine"
:
[
"Basic Medicine"
,
"
\u57fa\u7840\u533b\u5b66
"
,
"Other"
],
"clinical_medicine"
:
[
"Clinical Medicine"
,
"
\u4e34\u5e8a\u533b\u5b66
"
,
"Other"
],
"urban_and_rural_planner"
:
[
"Urban and Rural Planner"
,
"
\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08
"
,
"Other"
],
"accountant"
:
[
"Accountant"
,
"
\u6ce8\u518c\u4f1a\u8ba1\u5e08
"
,
"Other"
],
"fire_engineer"
:
[
"Fire Engineer"
,
"
\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08
"
,
"Other"
],
"environmental_impact_assessment_engineer"
:
[
"Environmental Impact Assessment Engineer"
,
"
\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08
"
,
"Other"
],
"tax_accountant"
:
[
"Tax Accountant"
,
"
\u7a0e\u52a1\u5e08
"
,
"Other"
],
"physician"
:
[
"Physician"
,
"
\u533b\u5e08\u8d44\u683c
"
,
"Other"
]
'computer_network'
:
[
'Computer Network'
,
'计算机网络'
,
'STEM'
],
'operating_system'
:
[
'Operating System'
,
'操作系统'
,
'STEM'
],
'computer_architecture'
:
[
'Computer Architecture'
,
'计算机组成'
,
'STEM'
],
'college_programming'
:
[
'College Programming'
,
'大学编程'
,
'STEM'
],
'college_physics'
:
[
'College Physics'
,
'大学物理'
,
'STEM'
],
'college_chemistry'
:
[
'College Chemistry'
,
'大学化学'
,
'STEM'
],
'advanced_mathematics'
:
[
'Advanced Mathematics'
,
'高等数学'
,
'STEM'
],
'probability_and_statistics'
:
[
'Probability and Statistics'
,
'概率统计'
,
'STEM'
],
'discrete_mathematics'
:
[
'Discrete Mathematics'
,
'离散数学'
,
'STEM'
],
'electrical_engineer'
:
[
'Electrical Engineer'
,
'注册电气工程师'
,
'STEM'
],
'metrology_engineer'
:
[
'Metrology Engineer'
,
'注册计量师'
,
'STEM'
],
'high_school_mathematics'
:
[
'High School Mathematics'
,
'高中数学'
,
'STEM'
],
'high_school_physics'
:
[
'High School Physics'
,
'高中物理'
,
'STEM'
],
'high_school_chemistry'
:
[
'High School Chemistry'
,
'高中化学'
,
'STEM'
],
'high_school_biology'
:
[
'High School Biology'
,
'高中生物'
,
'STEM'
],
'middle_school_mathematics'
:
[
'Middle School Mathematics'
,
'初中数学'
,
'STEM'
],
'middle_school_biology'
:
[
'Middle School Biology'
,
'初中生物'
,
'STEM'
],
'middle_school_physics'
:
[
'Middle School Physics'
,
'初中物理'
,
'STEM'
],
'middle_school_chemistry'
:
[
'Middle School Chemistry'
,
'初中化学'
,
'STEM'
],
'veterinary_medicine'
:
[
'Veterinary Medicine'
,
'兽医学'
,
'STEM'
],
'college_economics'
:
[
'College Economics'
,
'大学经济学'
,
'Social Science'
],
'business_administration'
:
[
'Business Administration'
,
'工商管理'
,
'Social Science'
],
'marxism'
:
[
'Marxism'
,
'马克思主义基本原理'
,
'Social Science'
],
'mao_zedong_thought'
:
[
'Mao Zedong Thought'
,
'毛泽东思想和中国特色社会主义理论体系概论'
,
'Social Science'
],
'education_science'
:
[
'Education Science'
,
'教育学'
,
'Social Science'
],
'teacher_qualification'
:
[
'Teacher Qualification'
,
'教师资格'
,
'Social Science'
],
'high_school_politics'
:
[
'High School Politics'
,
'高中政治'
,
'Social Science'
],
'high_school_geography'
:
[
'High School Geography'
,
'高中地理'
,
'Social Science'
],
'middle_school_politics'
:
[
'Middle School Politics'
,
'初中政治'
,
'Social Science'
],
'middle_school_geography'
:
[
'Middle School Geography'
,
'初中地理'
,
'Social Science'
],
'modern_chinese_history'
:
[
'Modern Chinese History'
,
'近代史纲要'
,
'Humanities'
],
'ideological_and_moral_cultivation'
:
[
'Ideological and Moral Cultivation'
,
'思想道德修养与法律基础'
,
'Humanities'
],
'logic'
:
[
'Logic'
,
'逻辑学'
,
'Humanities'
],
'law'
:
[
'Law'
,
'法学'
,
'Humanities'
],
'chinese_language_and_literature'
:
[
'Chinese Language and Literature'
,
'中国语言文学'
,
'Humanities'
],
'art_studies'
:
[
'Art Studies'
,
'艺术学'
,
'Humanities'
],
'professional_tour_guide'
:
[
'Professional Tour Guide'
,
'导游资格'
,
'Humanities'
],
'legal_professional'
:
[
'Legal Professional'
,
'法律职业资格'
,
'Humanities'
],
'high_school_chinese'
:
[
'High School Chinese'
,
'高中语文'
,
'Humanities'
],
'high_school_history'
:
[
'High School History'
,
'高中历史'
,
'Humanities'
],
'middle_school_history'
:
[
'Middle School History'
,
'初中历史'
,
'Humanities'
],
'civil_servant'
:
[
'Civil Servant'
,
'公务员'
,
'Other'
],
'sports_science'
:
[
'Sports Science'
,
'体育学'
,
'Other'
],
'plant_protection'
:
[
'Plant Protection'
,
'植物保护'
,
'Other'
],
'basic_medicine'
:
[
'Basic Medicine'
,
'基础医学'
,
'Other'
],
'clinical_medicine'
:
[
'Clinical Medicine'
,
'临床医学'
,
'Other'
],
'urban_and_rural_planner'
:
[
'Urban and Rural Planner'
,
'注册城乡规划师'
,
'Other'
],
'accountant'
:
[
'Accountant'
,
'注册会计师'
,
'Other'
],
'fire_engineer'
:
[
'Fire Engineer'
,
'注册消防工程师'
,
'Other'
],
'environmental_impact_assessment_engineer'
:
[
'Environmental Impact Assessment Engineer'
,
'环境影响评价工程师'
,
'Other'
],
'tax_accountant'
:
[
'Tax Accountant'
,
'税务师'
,
'Other'
],
'physician'
:
[
'Physician'
,
'医师资格'
,
'Other'
],
}
ceval_all_sets
=
list
(
ceval_subject_mapping
.
keys
())
...
...
configs/datasets/ceval/ceval_zero_shot_gen_bd40ef.py
0 → 100644
View file @
9083dea6
from
opencompass.openicl.icl_prompt_template
import
PromptTemplate
from
opencompass.openicl.icl_retriever
import
FixKRetriever
,
ZeroRetriever
from
opencompass.openicl.icl_inferencer
import
GenInferencer
from
opencompass.openicl.icl_evaluator
import
AccEvaluator
from
opencompass.datasets
import
CEvalDataset
from
opencompass.utils.text_postprocessors
import
first_option_postprocess
ceval_subject_mapping
=
{
'computer_network'
:
[
'Computer Network'
,
'计算机网络'
,
'STEM'
],
'operating_system'
:
[
'Operating System'
,
'操作系统'
,
'STEM'
],
'computer_architecture'
:
[
'Computer Architecture'
,
'计算机组成'
,
'STEM'
],
'college_programming'
:
[
'College Programming'
,
'大学编程'
,
'STEM'
],
'college_physics'
:
[
'College Physics'
,
'大学物理'
,
'STEM'
],
'college_chemistry'
:
[
'College Chemistry'
,
'大学化学'
,
'STEM'
],
'advanced_mathematics'
:
[
'Advanced Mathematics'
,
'高等数学'
,
'STEM'
],
'probability_and_statistics'
:
[
'Probability and Statistics'
,
'概率统计'
,
'STEM'
],
'discrete_mathematics'
:
[
'Discrete Mathematics'
,
'离散数学'
,
'STEM'
],
'electrical_engineer'
:
[
'Electrical Engineer'
,
'注册电气工程师'
,
'STEM'
],
'metrology_engineer'
:
[
'Metrology Engineer'
,
'注册计量师'
,
'STEM'
],
'high_school_mathematics'
:
[
'High School Mathematics'
,
'高中数学'
,
'STEM'
],
'high_school_physics'
:
[
'High School Physics'
,
'高中物理'
,
'STEM'
],
'high_school_chemistry'
:
[
'High School Chemistry'
,
'高中化学'
,
'STEM'
],
'high_school_biology'
:
[
'High School Biology'
,
'高中生物'
,
'STEM'
],
'middle_school_mathematics'
:
[
'Middle School Mathematics'
,
'初中数学'
,
'STEM'
],
'middle_school_biology'
:
[
'Middle School Biology'
,
'初中生物'
,
'STEM'
],
'middle_school_physics'
:
[
'Middle School Physics'
,
'初中物理'
,
'STEM'
],
'middle_school_chemistry'
:
[
'Middle School Chemistry'
,
'初中化学'
,
'STEM'
],
'veterinary_medicine'
:
[
'Veterinary Medicine'
,
'兽医学'
,
'STEM'
],
'college_economics'
:
[
'College Economics'
,
'大学经济学'
,
'Social Science'
],
'business_administration'
:
[
'Business Administration'
,
'工商管理'
,
'Social Science'
],
'marxism'
:
[
'Marxism'
,
'马克思主义基本原理'
,
'Social Science'
],
'mao_zedong_thought'
:
[
'Mao Zedong Thought'
,
'毛泽东思想和中国特色社会主义理论体系概论'
,
'Social Science'
],
'education_science'
:
[
'Education Science'
,
'教育学'
,
'Social Science'
],
'teacher_qualification'
:
[
'Teacher Qualification'
,
'教师资格'
,
'Social Science'
],
'high_school_politics'
:
[
'High School Politics'
,
'高中政治'
,
'Social Science'
],
'high_school_geography'
:
[
'High School Geography'
,
'高中地理'
,
'Social Science'
],
'middle_school_politics'
:
[
'Middle School Politics'
,
'初中政治'
,
'Social Science'
],
'middle_school_geography'
:
[
'Middle School Geography'
,
'初中地理'
,
'Social Science'
],
'modern_chinese_history'
:
[
'Modern Chinese History'
,
'近代史纲要'
,
'Humanities'
],
'ideological_and_moral_cultivation'
:
[
'Ideological and Moral Cultivation'
,
'思想道德修养与法律基础'
,
'Humanities'
],
'logic'
:
[
'Logic'
,
'逻辑学'
,
'Humanities'
],
'law'
:
[
'Law'
,
'法学'
,
'Humanities'
],
'chinese_language_and_literature'
:
[
'Chinese Language and Literature'
,
'中国语言文学'
,
'Humanities'
],
'art_studies'
:
[
'Art Studies'
,
'艺术学'
,
'Humanities'
],
'professional_tour_guide'
:
[
'Professional Tour Guide'
,
'导游资格'
,
'Humanities'
],
'legal_professional'
:
[
'Legal Professional'
,
'法律职业资格'
,
'Humanities'
],
'high_school_chinese'
:
[
'High School Chinese'
,
'高中语文'
,
'Humanities'
],
'high_school_history'
:
[
'High School History'
,
'高中历史'
,
'Humanities'
],
'middle_school_history'
:
[
'Middle School History'
,
'初中历史'
,
'Humanities'
],
'civil_servant'
:
[
'Civil Servant'
,
'公务员'
,
'Other'
],
'sports_science'
:
[
'Sports Science'
,
'体育学'
,
'Other'
],
'plant_protection'
:
[
'Plant Protection'
,
'植物保护'
,
'Other'
],
'basic_medicine'
:
[
'Basic Medicine'
,
'基础医学'
,
'Other'
],
'clinical_medicine'
:
[
'Clinical Medicine'
,
'临床医学'
,
'Other'
],
'urban_and_rural_planner'
:
[
'Urban and Rural Planner'
,
'注册城乡规划师'
,
'Other'
],
'accountant'
:
[
'Accountant'
,
'注册会计师'
,
'Other'
],
'fire_engineer'
:
[
'Fire Engineer'
,
'注册消防工程师'
,
'Other'
],
'environmental_impact_assessment_engineer'
:
[
'Environmental Impact Assessment Engineer'
,
'环境影响评价工程师'
,
'Other'
],
'tax_accountant'
:
[
'Tax Accountant'
,
'税务师'
,
'Other'
],
'physician'
:
[
'Physician'
,
'医师资格'
,
'Other'
],
}
ceval_all_sets
=
list
(
ceval_subject_mapping
.
keys
())
ceval_datasets
=
[]
for
_split
in
[
"val"
]:
for
_name
in
ceval_all_sets
:
_ch_name
=
ceval_subject_mapping
[
_name
][
1
]
ceval_infer_cfg
=
dict
(
ice_template
=
dict
(
type
=
PromptTemplate
,
template
=
dict
(
begin
=
"</E>"
,
round
=
[
dict
(
role
=
"HUMAN"
,
prompt
=
f
"以下是中国关于
{
_ch_name
}
考试的单项选择题,请选出其中的正确答案。
\n
{{question}}
\n
A. {{A}}
\n
B. {{B}}
\n
C. {{C}}
\n
D. {{D}}
\n
让我们一步一步思考。答案: "
),
dict
(
role
=
"BOT"
,
prompt
=
"{answer}"
),
]),
ice_token
=
"</E>"
,
),
retriever
=
dict
(
type
=
ZeroRetriever
),
inferencer
=
dict
(
type
=
GenInferencer
,
max_out_len
=
256
),
)
ceval_eval_cfg
=
dict
(
evaluator
=
dict
(
type
=
AccEvaluator
),
pred_postprocessor
=
dict
(
type
=
first_option_postprocess
,
options
=
'ABCD'
))
ceval_datasets
.
append
(
dict
(
type
=
CEvalDataset
,
path
=
"./data/ceval/formal_ceval"
,
name
=
_name
,
abbr
=
"ceval-"
+
_name
if
_split
==
"val"
else
"ceval-test-"
+
_name
,
reader_cfg
=
dict
(
input_columns
=
[
"question"
,
"A"
,
"B"
,
"C"
,
"D"
],
output_column
=
"answer"
,
train_split
=
"dev"
,
test_split
=
_split
),
infer_cfg
=
ceval_infer_cfg
,
eval_cfg
=
ceval_eval_cfg
,
))
configs/datasets/commonsenseqa/commonsenseqa_ppl_c49e77.py
0 → 100644
View file @
9083dea6
# Use FixKRetriever to avoid hang caused by the Huggingface
from
opencompass.openicl.icl_prompt_template
import
PromptTemplate
from
opencompass.openicl.icl_retriever
import
FixKRetriever
from
opencompass.openicl.icl_inferencer
import
PPLInferencer
from
opencompass.openicl.icl_evaluator
import
AccEvaluator
from
opencompass.datasets
import
commonsenseqaDataset
commonsenseqa_reader_cfg
=
dict
(
input_columns
=
[
'question'
,
'A'
,
'B'
,
'C'
,
'D'
,
'E'
],
output_column
=
'answerKey'
,
test_split
=
'validation'
)
_ice_template
=
dict
(
type
=
PromptTemplate
,
template
=
{
ans
:
dict
(
begin
=
'</E>'
,
round
=
[
dict
(
role
=
"HUMAN"
,
prompt
=
"Question: {question}
\n
A. {A}
\n
B. {B}
\n
C. {C}
\n
D. {D}
\n
E. {E}
\n
Answer: "
),
dict
(
role
=
"BOT"
,
prompt
=
f
"
{
ans
}
"
),
])
for
ans
in
[
'A'
,
'B'
,
'C'
,
'D'
,
'E'
]
},
ice_token
=
'</E>'
)
commonsenseqa_infer_cfg
=
dict
(
ice_template
=
_ice_template
,
retriever
=
dict
(
type
=
FixKRetriever
,
fix_id_list
=
[
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
]),
inferencer
=
dict
(
type
=
PPLInferencer
))
commonsenseqa_eval_cfg
=
dict
(
evaluator
=
dict
(
type
=
AccEvaluator
))
commonsenseqa_datasets
=
[
dict
(
abbr
=
'commonsense_qa'
,
type
=
commonsenseqaDataset
,
path
=
'./data/commonsenseqa'
,
reader_cfg
=
commonsenseqa_reader_cfg
,
infer_cfg
=
commonsenseqa_infer_cfg
,
eval_cfg
=
commonsenseqa_eval_cfg
)
]
configs/datasets/ds1000/ds1000_gen_cbc84f.py
View file @
9083dea6
...
...
@@ -37,7 +37,7 @@ ds1000_datasets = [
dict
(
abbr
=
f
"ds1000_
{
lib
}
"
,
type
=
DS1000Dataset
,
path
=
"ds1000_data/"
,
path
=
"
./data/
ds1000_data/"
,
libs
=
f
"
{
lib
}
"
,
reader_cfg
=
ds1000_reader_cfg
,
infer_cfg
=
ds1000_infer_cfg
,
...
...
@@ -55,7 +55,7 @@ ds1000_datasets.append(
dict
(
abbr
=
"ds1000_Matplotlib"
,
type
=
DS1000Dataset
,
path
=
"ds1000_data/"
,
path
=
"
./data/
ds1000_data/"
,
libs
=
"Matplotlib"
,
reader_cfg
=
ds1000_reader_cfg
,
infer_cfg
=
ds1000_infer_cfg
,
...
...
configs/datasets/ds1000/ds1000_service_eval_gen_cbc84f.py
0 → 100644
View file @
9083dea6
from
opencompass.openicl.icl_prompt_template
import
PromptTemplate
from
opencompass.openicl.icl_retriever
import
ZeroRetriever
from
opencompass.openicl.icl_inferencer
import
GenInferencer
from
opencompass.datasets
import
DS1000Dataset
,
DS1000ServiceEvaluator
ds1000_reader_cfg
=
dict
(
input_columns
=
[
"prompt"
],
output_column
=
"test_column"
,
train_split
=
'test'
,
test_split
=
'test'
)
ds1000_infer_cfg
=
dict
(
prompt_template
=
dict
(
type
=
PromptTemplate
,
template
=
dict
(
round
=
[
dict
(
role
=
"HUMAN"
,
prompt
=
"{prompt}"
,
),
]),
),
retriever
=
dict
(
type
=
ZeroRetriever
),
inferencer
=
dict
(
type
=
GenInferencer
),
)
ds1000_eval_cfg_dict
=
{
lib
:
dict
(
evaluator
=
dict
(
type
=
DS1000ServiceEvaluator
,
lib
=
lib
,
ip_address
=
"localhost"
,
# replace to your code_eval_server ip_address, port
port
=
5000
),
pred_role
=
"BOT"
)
for
lib
in
[
'Pandas'
,
'Numpy'
,
'Tensorflow'
,
'Scipy'
,
'Sklearn'
,
'Pytorch'
,
'Matplotlib'
,
]
}
# The DS-1000 dataset can be downloaded from
# https://github.com/HKUNLP/DS-1000/blob/main/ds1000_data.zip
ds1000_datasets
=
[
dict
(
abbr
=
f
"ds1000_
{
lib
}
"
,
type
=
DS1000Dataset
,
path
=
"./data/ds1000_data/"
,
libs
=
f
"
{
lib
}
"
,
reader_cfg
=
ds1000_reader_cfg
,
infer_cfg
=
ds1000_infer_cfg
,
eval_cfg
=
ds1000_eval_cfg_dict
[
lib
],
)
for
lib
in
[
'Pandas'
,
'Numpy'
,
'Tensorflow'
,
'Scipy'
,
'Sklearn'
,
'Pytorch'
,
'Matplotlib'
,
]
]
configs/datasets/hellaswag/hellaswag_ppl_7d7f2d.py
0 → 100644
View file @
9083dea6
from
opencompass.openicl.icl_prompt_template
import
PromptTemplate
from
opencompass.openicl.icl_retriever
import
ZeroRetriever
from
opencompass.openicl.icl_inferencer
import
PPLInferencer
from
opencompass.openicl.icl_evaluator
import
AccEvaluator
from
opencompass.datasets
import
hellaswagDataset_V2
hellaswag_reader_cfg
=
dict
(
input_columns
=
[
'query'
,
'A'
,
'B'
,
'C'
,
'D'
],
output_column
=
'label'
)
hellaswag_infer_cfg
=
dict
(
prompt_template
=
dict
(
type
=
PromptTemplate
,
template
=
{
ans
:
dict
(
round
=
[
dict
(
role
=
"HUMAN"
,
prompt
=
"{ctx}
\n
Question: Which ending makes the most sense?
\n
A. {A}
\n
B. {B}
\n
C. {C}
\n
D. {D}
\n
Answer: "
),
dict
(
role
=
"BOT"
,
prompt
=
f
"
{
ans
}
"
),
])
for
ans
in
[
'A'
,
'B'
,
'C'
,
'D'
]
}),
retriever
=
dict
(
type
=
ZeroRetriever
),
inferencer
=
dict
(
type
=
PPLInferencer
))
hellaswag_eval_cfg
=
dict
(
evaluator
=
dict
(
type
=
AccEvaluator
))
hellaswag_datasets
=
[
dict
(
abbr
=
'hellaswag'
,
type
=
hellaswagDataset_V2
,
path
=
'./data/hellaswag/hellaswag.jsonl'
,
reader_cfg
=
hellaswag_reader_cfg
,
infer_cfg
=
hellaswag_infer_cfg
,
eval_cfg
=
hellaswag_eval_cfg
)
]
configs/datasets/mmlu/mmlu_zero_shot_gen_47e2c0.py
0 → 100644
View file @
9083dea6
from
opencompass.openicl.icl_prompt_template
import
PromptTemplate
from
opencompass.openicl.icl_retriever
import
FixKRetriever
,
ZeroRetriever
from
opencompass.openicl.icl_inferencer
import
GenInferencer
from
opencompass.openicl.icl_evaluator
import
AccEvaluator
from
opencompass.datasets
import
MMLUDataset
from
opencompass.utils.text_postprocessors
import
first_option_postprocess
# None of the mmlu dataset in huggingface is correctly parsed, so we use our own dataset reader
# Please download the dataset from https://people.eecs.berkeley.edu/~hendrycks/data.tar
mmlu_reader_cfg
=
dict
(
input_columns
=
[
"input"
,
"A"
,
"B"
,
"C"
,
"D"
],
output_column
=
"target"
,
train_split
=
'dev'
)
mmlu_all_sets
=
[
"college_biology"
,
"college_chemistry"
,
"college_computer_science"
,
"college_mathematics"
,
"college_physics"
,
"electrical_engineering"
,
"astronomy"
,
"anatomy"
,
"abstract_algebra"
,
"machine_learning"
,
"clinical_knowledge"
,
"global_facts"
,
"management"
,
"nutrition"
,
"marketing"
,
"professional_accounting"
,
"high_school_geography"
,
"international_law"
,
"moral_scenarios"
,
"computer_security"
,
"high_school_microeconomics"
,
"professional_law"
,
"medical_genetics"
,
"professional_psychology"
,
"jurisprudence"
,
"world_religions"
,
"philosophy"
,
"virology"
,
"high_school_chemistry"
,
"public_relations"
,
"high_school_macroeconomics"
,
"human_sexuality"
,
"elementary_mathematics"
,
"high_school_physics"
,
"high_school_computer_science"
,
"high_school_european_history"
,
"business_ethics"
,
"moral_disputes"
,
"high_school_statistics"
,
"miscellaneous"
,
"formal_logic"
,
"high_school_government_and_politics"
,
"prehistory"
,
"security_studies"
,
"high_school_biology"
,
"logical_fallacies"
,
"high_school_world_history"
,
"professional_medicine"
,
"high_school_mathematics"
,
"college_medicine"
,
"high_school_us_history"
,
"sociology"
,
"econometrics"
,
"high_school_psychology"
,
"human_aging"
,
"us_foreign_policy"
,
"conceptual_physics"
,
]
mmlu_datasets
=
[]
for
_name
in
mmlu_all_sets
:
_hint
=
f
'There is a single choice question about
{
_name
.
replace
(
"_"
,
" "
)
}
. Answer the question by replying A, B, C or D.'
mmlu_infer_cfg
=
dict
(
ice_template
=
dict
(
type
=
PromptTemplate
,
template
=
dict
(
round
=
[
dict
(
role
=
"HUMAN"
,
prompt
=
f
"
{
_hint
}
\n
Q: {{input}}
\n
A. {{A}}
\n
B. {{B}}
\n
C. {{C}}
\n
D. {{D}}
\n
A: "
),
dict
(
role
=
"BOT"
,
prompt
=
"{target}
\n
"
)
]),
),
prompt_template
=
dict
(
type
=
PromptTemplate
,
template
=
dict
(
begin
=
"</E>"
,
round
=
[
dict
(
role
=
"HUMAN"
,
prompt
=
f
"
{
_hint
}
\n
Q: {{input}}
\n
A. {{A}}
\n
B. {{B}}
\n
C. {{C}}
\n
D. {{D}}
\n
Let's think step by step. A: "
),
],
),
ice_token
=
"</E>"
,
),
retriever
=
dict
(
type
=
ZeroRetriever
),
inferencer
=
dict
(
type
=
GenInferencer
,
max_out_len
=
256
),
)
mmlu_eval_cfg
=
dict
(
evaluator
=
dict
(
type
=
AccEvaluator
),
pred_postprocessor
=
dict
(
type
=
first_option_postprocess
,
options
=
'ABCD'
))
mmlu_datasets
.
append
(
dict
(
abbr
=
f
"lukaemon_mmlu_
{
_name
}
"
,
type
=
MMLUDataset
,
path
=
"./data/mmlu/"
,
name
=
_name
,
reader_cfg
=
mmlu_reader_cfg
,
infer_cfg
=
mmlu_infer_cfg
,
eval_cfg
=
mmlu_eval_cfg
,
))
configs/models/bluelm/hf_bluelm_7b_base.py
0 → 100644
View file @
9083dea6
from
opencompass.models
import
HuggingFaceCausalLM
models
=
[
dict
(
type
=
HuggingFaceCausalLM
,
abbr
=
'bluelm-7b-base-hf'
,
path
=
"vivo-ai/BlueLM-7B-Base"
,
tokenizer_path
=
'vivo-ai/BlueLM-7B-Base'
,
model_kwargs
=
dict
(
device_map
=
'auto'
,
trust_remote_code
=
True
,
),
tokenizer_kwargs
=
dict
(
padding_side
=
'left'
,
truncation_side
=
'left'
,
trust_remote_code
=
True
,
use_fast
=
False
,
),
max_out_len
=
100
,
max_seq_len
=
2048
,
batch_size
=
8
,
run_cfg
=
dict
(
num_gpus
=
1
,
num_procs
=
1
),
)
]
configs/models/bluelm/hf_bluelm_7b_base_32k.py
0 → 100644
View file @
9083dea6
from
opencompass.models
import
HuggingFaceCausalLM
models
=
[
dict
(
type
=
HuggingFaceCausalLM
,
abbr
=
'bluelm-7b-base-32k-hf'
,
path
=
"vivo-ai/BlueLM-7B-Base-32K"
,
tokenizer_path
=
'vivo-ai/BlueLM-7B-Base-32K'
,
model_kwargs
=
dict
(
device_map
=
'auto'
,
trust_remote_code
=
True
,
),
tokenizer_kwargs
=
dict
(
padding_side
=
'left'
,
truncation_side
=
'left'
,
trust_remote_code
=
True
,
use_fast
=
False
,
),
max_out_len
=
100
,
max_seq_len
=
4096
,
batch_size
=
8
,
run_cfg
=
dict
(
num_gpus
=
1
,
num_procs
=
1
),
)
]
configs/models/bluelm/hf_bluelm_7b_chat.py
0 → 100644
View file @
9083dea6
from
opencompass.models
import
HuggingFaceCausalLM
_meta_template
=
dict
(
round
=
[
dict
(
role
=
'HUMAN'
,
begin
=
'[|Human|]:'
),
dict
(
role
=
'BOT'
,
begin
=
'[|AI|]:'
,
generate
=
True
),
],
)
models
=
[
dict
(
type
=
HuggingFaceCausalLM
,
abbr
=
'bluelm-7b-chat-hf'
,
path
=
"vivo-ai/BlueLM-7B-Chat"
,
tokenizer_path
=
'vivo-ai/BlueLM-7B-Chat'
,
model_kwargs
=
dict
(
device_map
=
'auto'
,
trust_remote_code
=
True
,
),
tokenizer_kwargs
=
dict
(
padding_side
=
'left'
,
truncation_side
=
'left'
,
trust_remote_code
=
True
,
use_fast
=
False
,
),
meta_template
=
_meta_template
,
max_out_len
=
100
,
max_seq_len
=
2048
,
batch_size
=
8
,
run_cfg
=
dict
(
num_gpus
=
1
,
num_procs
=
1
),
)
]
configs/models/bluelm/hf_bluelm_7b_chat_32k.py
0 → 100644
View file @
9083dea6
from
opencompass.models
import
HuggingFaceCausalLM
_meta_template
=
dict
(
round
=
[
dict
(
role
=
'HUMAN'
,
begin
=
'[|Human|]:'
),
dict
(
role
=
'BOT'
,
begin
=
'[|AI|]:'
,
generate
=
True
),
],
)
models
=
[
dict
(
type
=
HuggingFaceCausalLM
,
abbr
=
'bluelm-7b-chat-32k-hf'
,
path
=
"vivo-ai/BlueLM-7B-Chat-32K"
,
tokenizer_path
=
'vivo-ai/BlueLM-7B-Chat-32K'
,
model_kwargs
=
dict
(
device_map
=
'auto'
,
trust_remote_code
=
True
,
),
tokenizer_kwargs
=
dict
(
padding_side
=
'left'
,
truncation_side
=
'left'
,
trust_remote_code
=
True
,
use_fast
=
False
,
),
meta_template
=
_meta_template
,
max_out_len
=
100
,
max_seq_len
=
4096
,
batch_size
=
8
,
run_cfg
=
dict
(
num_gpus
=
1
,
num_procs
=
1
),
)
]
configs/models/nanbeige/hf_nanbeige_16b_base.py
0 → 100644
View file @
9083dea6
from
opencompass.models
import
HuggingFaceCausalLM
_meta_template
=
dict
(
round
=
[
dict
(
role
=
'HUMAN'
,
begin
=
''
,
end
=
''
),
dict
(
role
=
'BOT'
,
begin
=
''
,
end
=
'
\n\n
'
,
generate
=
True
),
],
)
models
=
[
dict
(
abbr
=
'nanbeige-16b-base-hf'
,
type
=
HuggingFaceCausalLM
,
path
=
'Nanbeige/Nanbeige-16B-Base'
,
tokenizer_path
=
'Nanbeige/Nanbeige-16B-Base'
,
model_kwargs
=
dict
(
device_map
=
'auto'
,
trust_remote_code
=
True
,
torch_dtype
=
'auto'
,
),
tokenizer_kwargs
=
dict
(
padding_side
=
'right'
,
truncation_side
=
'left'
,
trust_remote_code
=
True
),
meta_template
=
_meta_template
,
batch_padding
=
False
,
max_out_len
=
1024
,
max_seq_len
=
4096
,
batch_size
=
1
,
run_cfg
=
dict
(
num_gpus
=
1
,
num_procs
=
1
),
)
]
configs/models/nanbeige/hf_nanbeige_16b_base_32k.py
0 → 100644
View file @
9083dea6
from
opencompass.models
import
HuggingFaceCausalLM
_meta_template
=
dict
(
round
=
[
dict
(
role
=
'HUMAN'
,
begin
=
''
,
end
=
''
),
dict
(
role
=
'BOT'
,
begin
=
''
,
end
=
'
\n\n
'
,
generate
=
True
),
],
)
models
=
[
dict
(
type
=
HuggingFaceCausalLM
,
abbr
=
'nanbeige-16b-base-32k-hf'
,
path
=
"Nanbeige/Nanbeige-16B-Base-32K"
,
tokenizer_path
=
'Nanbeige/Nanbeige-16B-Base-32K'
,
model_kwargs
=
dict
(
device_map
=
'auto'
,
trust_remote_code
=
True
,
torch_dtype
=
'auto'
,
),
tokenizer_kwargs
=
dict
(
padding_side
=
'right'
,
truncation_side
=
'left'
,
trust_remote_code
=
True
,
use_fast
=
False
,
),
meta_template
=
_meta_template
,
batch_padding
=
False
,
max_out_len
=
1024
,
max_seq_len
=
8192
,
batch_size
=
8
,
run_cfg
=
dict
(
num_gpus
=
1
,
num_procs
=
1
),
)
]
configs/models/nanbeige/hf_nanbeige_16b_chat.py
0 → 100644
View file @
9083dea6
from
opencompass.models
import
HuggingFaceCausalLM
_meta_template
=
dict
(
round
=
[
dict
(
role
=
'HUMAN'
,
begin
=
'### Human:
\n
'
,
end
=
'
\n\n
'
),
dict
(
role
=
'BOT'
,
begin
=
'### Assistant: '
,
end
=
'</s>'
,
generate
=
True
),
],
)
models
=
[
dict
(
type
=
HuggingFaceCausalLM
,
abbr
=
'nanbeige-16b-chat-hf'
,
path
=
"Nanbeige/Nanbeige-16B-Chat"
,
tokenizer_path
=
'Nanbeige/Nanbeige-16B-Chat'
,
model_kwargs
=
dict
(
device_map
=
'auto'
,
trust_remote_code
=
True
,
torch_dtype
=
'auto'
,
),
tokenizer_kwargs
=
dict
(
padding_side
=
'right'
,
truncation_side
=
'left'
,
trust_remote_code
=
True
,
use_fast
=
False
,
),
meta_template
=
_meta_template
,
batch_padding
=
False
,
max_out_len
=
1024
,
max_seq_len
=
4096
,
batch_size
=
8
,
run_cfg
=
dict
(
num_gpus
=
1
,
num_procs
=
1
),
)
]
configs/models/nanbeige/hf_nanbeige_16b_chat_32k.py
0 → 100644
View file @
9083dea6
from
opencompass.models
import
HuggingFaceCausalLM
_meta_template
=
dict
(
round
=
[
dict
(
role
=
'HUMAN'
,
begin
=
'### Human:
\n
'
,
end
=
'
\n\n
'
),
dict
(
role
=
'BOT'
,
begin
=
'### Assistant: '
,
end
=
'</s>'
,
generate
=
True
),
],
)
models
=
[
dict
(
type
=
HuggingFaceCausalLM
,
abbr
=
'nanbeige-16b-chat-32k-hf'
,
path
=
"Nanbeige/Nanbeige-16B-Chat-32K"
,
tokenizer_path
=
'Nanbeige/Nanbeige-16B-Chat-32K'
,
model_kwargs
=
dict
(
device_map
=
'auto'
,
trust_remote_code
=
True
,
torch_dtype
=
'auto'
,
),
tokenizer_kwargs
=
dict
(
padding_side
=
'right'
,
truncation_side
=
'left'
,
trust_remote_code
=
True
,
use_fast
=
False
,
),
meta_template
=
_meta_template
,
batch_padding
=
False
,
max_out_len
=
1024
,
max_seq_len
=
8192
,
batch_size
=
8
,
run_cfg
=
dict
(
num_gpus
=
1
,
num_procs
=
1
),
)
]
configs/models/others/hf_dolphin_21_mistral_7b.py
0 → 100644
View file @
9083dea6
from
opencompass.models
import
HuggingFaceCausalLM
_meta_template
=
dict
(
round
=
[
dict
(
role
=
"HUMAN"
,
begin
=
'<|im_start|>user
\n
'
,
end
=
'<|im_end|>
\n
'
),
dict
(
role
=
"BOT"
,
begin
=
"<|im_start|>assistant
\n
"
,
end
=
'<|im_end|>
\n
'
,
generate
=
True
),
],
eos_token_id
=
2
)
models
=
[
dict
(
abbr
=
'dolphin-2.2.1-mistral-7b-hf'
,
type
=
HuggingFaceCausalLM
,
path
=
'ehartford/dolphin-2.2.1-mistral-7b'
,
tokenizer_path
=
'ehartford/dolphin-2.2.1-mistral-7b'
,
model_kwargs
=
dict
(
device_map
=
'auto'
,
trust_remote_code
=
True
,
),
tokenizer_kwargs
=
dict
(
padding_side
=
'left'
,
truncation_side
=
'left'
,
trust_remote_code
=
True
,
),
meta_template
=
_meta_template
,
max_out_len
=
100
,
max_seq_len
=
2048
,
batch_size
=
8
,
run_cfg
=
dict
(
num_gpus
=
1
,
num_procs
=
1
),
)
]
configs/models/others/hf_fashiongpt_70b_v11.py
0 → 100644
View file @
9083dea6
from
opencompass.models
import
HuggingFaceCausalLM
_meta_template
=
dict
(
round
=
[
dict
(
role
=
"HUMAN"
,
begin
=
'### User:
\n
'
,
end
=
'
\n
'
),
dict
(
role
=
"BOT"
,
begin
=
"### Assistant:
\n
"
,
generate
=
True
),
],
eos_token_id
=
2
)
models
=
[
dict
(
abbr
=
'fashiongpt-70b-v11-hf'
,
type
=
HuggingFaceCausalLM
,
path
=
'ICBU-NPU/FashionGPT-70B-V1.1'
,
tokenizer_path
=
'ICBU-NPU/FashionGPT-70B-V1.1'
,
model_kwargs
=
dict
(
device_map
=
'auto'
,
trust_remote_code
=
True
,
),
tokenizer_kwargs
=
dict
(
padding_side
=
'left'
,
truncation_side
=
'left'
,
trust_remote_code
=
True
,
),
meta_template
=
_meta_template
,
max_out_len
=
100
,
max_seq_len
=
2048
,
batch_size
=
8
,
run_cfg
=
dict
(
num_gpus
=
8
,
num_procs
=
1
),
)
]
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment