Commit 36f11110 authored by cky's avatar cky Committed by gaotong
Browse files

update datasets

parent 3cfe73de
[codespell]
skip = *.ipynb
count =
quiet-level = 3
ignore-words-list = nd, ans, ques
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import ARCDataset
ARC_e_reader_cfg = dict(
input_columns=['question', 'textA', 'textB', 'textC', 'textD'],
output_column='answerKey')
ARC_e_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
"A": "Question: {question}\nAnswer: {textA}",
"B": "Question: {question}\nAnswer: {textB}",
"C": "Question: {question}\nAnswer: {textC}",
"D": "Question: {question}\nAnswer: {textD}"
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
ARC_e_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
ARC_e_datasets = [
dict(
type=ARCDataset,
abbr='ARC-e',
path='./data/ARC/ARC-e/ARC-Easy-Dev.jsonl',
reader_cfg=ARC_e_reader_cfg,
infer_cfg=ARC_e_infer_cfg,
eval_cfg=ARC_e_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .CLUE_afqmc_ppl_c83c36 import afqmc_datasets # noqa: F401, F403
from mmengine.config import read_base
with read_base():
from .FewCLUE_bustm_ppl_47f2ab import bustm_datasets # noqa: F401, F403
from mmengine.config import read_base
with read_base():
from .FewCLUE_ocnli_fc_gen_bef37f import ocnli_fc_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
RTE_reader_cfg = dict(
input_columns=['hypothesis', 'premise'],
output_column='label',
test_split='train')
RTE_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'entailment': '{premise}?entailment, {hypothesis}',
'not_entailment': '{premise}?not_entailment, {hypothesis}'
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
RTE_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
RTE_datasets = [
dict(
type=HFDataset,
abbr='RTE',
path='json',
data_files='./data/SuperGLUE/RTE/val.jsonl',
split='train',
reader_cfg=RTE_reader_cfg,
infer_cfg=RTE_infer_cfg,
eval_cfg=RTE_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .SuperGLUE_WiC_ppl_4118db import WiC_datasets # noqa: F401, F403
from mmengine.config import read_base
with read_base():
from .civilcomments_ppl_e01497 import civilcomments_datasets # noqa: F401, F403
from mmengine.config import read_base
with read_base():
from .commonsenseqa_gen_a58dbd import commonsenseqa_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CHIDDataset
chid_reader_cfg = dict(
input_columns=[f'content{i}' for i in range(7)], output_column='answer')
chid_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={answer: f"{{content{answer}}}"
for answer in range(7)}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
chid_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
chid_datasets = [
dict(
type=CHIDDataset,
path='json',
abbr='chid',
data_files='./data/FewCLUE/chid/test_public.json',
split='train',
reader_cfg=chid_reader_cfg,
infer_cfg=chid_infer_cfg,
eval_cfg=chid_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .hellaswag_gen_cae9cb import hellaswag_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HFDataset, HumanEvaluator
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='Complete the following python code:\n{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type='humaneval'),
)
humaneval_datasets = [
dict(
type=HFDataset,
path='openai_humaneval',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import BM25Retriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import BleuEvaluator
from opencompass.datasets import IWSLT2017Dataset
iwslt2017_reader_cfg = dict(
input_columns='en', output_column='de', train_split='validation')
iwslt2017_infer_cfg = dict(
ice_template=dict(type='PromptTemplate',
template='</E>{en} = {de}',
ice_token='</E>'),
retriever=dict(type=BM25Retriever, ice_num=1),
inferencer=dict(type=GenInferencer))
iwslt2017_eval_cfg = dict(
evaluator=dict(type=BleuEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type='general_cn'),
dataset_postprocessor=dict(type='general_cn'))
iwslt2017_datasets = [
dict(
type=IWSLT2017Dataset,
path='iwslt2017',
name='iwslt2017-en-de',
reader_cfg=iwslt2017_reader_cfg,
infer_cfg=iwslt2017_infer_cfg,
eval_cfg=iwslt2017_eval_cfg)
]
\ No newline at end of file
from mmengine.config import read_base
with read_base():
from .mbpp_gen_4104e4 import mbpp_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import NarrativeQADataset, TriviaQAEvaluator
narrativeqa_reader_cfg = dict(
input_columns=['question', 'evidence'],
output_column='answer',
train_split='valid',
test_split='valid')
narrativeqa_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt='{evidence}\nAnswer these questions:\nQ: {question}?A:'),
dict(role='BOT', prompt=''),
], )),
retriever=dict(type=ZeroRetriever),
inferencer=dict(
type=GenInferencer, max_out_len=50, max_seq_len=8192, batch_size=4))
narrativeqa_eval_cfg = dict(
evaluator=dict(type=TriviaQAEvaluator), pred_role='BOT')
narrativeqa_datasets = [
dict(
type=NarrativeQADataset,
abbr='NarrativeQA',
path='./data/narrativeqa/',
reader_cfg=narrativeqa_reader_cfg,
infer_cfg=narrativeqa_infer_cfg,
eval_cfg=narrativeqa_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HFDataset
qabench_reader_cfg = dict(
input_columns=['prompt'],
output_column='reference',
)
# TODO: allow empty output-column
qabench_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[dict(role="HUMAN", prompt="{prompt}")])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
qabench_datasets = [
dict(
type=HFDataset,
path='csv',
data_files='./data/qabench/qabench-test.qa.csv',
abbr="qabench",
split='train',
reader_cfg=qabench_reader_cfg,
infer_cfg=qabench_infer_cfg,
eval_cfg=dict(ds_column="reference"))
]
from mmengine.config import read_base
with read_base():
from .qaspercut_gen_943606 import qaspercut_datasets # noqa: F401, F403
from mmengine.config import read_base
with read_base():
from .strategyqa_gen_be3f8d import strategyqa_datasets # noqa: F401, F403
from mmengine.config import read_base
with read_base():
from .triviaqarc_gen_6c1726 import triviaqarc_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import winograndeDataset
winogrande_reader_cfg = dict(
input_columns=['opt1', 'opt2'],
output_column='answer',
train_split='validation',
test_split='validation')
winogrande_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
i: dict(round=[
dict(role="HUMAN", prompt=f"Good sentence: {{opt{i+1}}}"),
])
for i in range(2)
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
winogrande_eval_cfg = dict(evaluator=dict(type=AccEvaluator), )
winogrande_datasets = [
dict(
abbr='winogrande',
type=winograndeDataset,
path='winogrande',
name='winogrande_xs',
reader_cfg=winogrande_reader_cfg,
infer_cfg=winogrande_infer_cfg,
eval_cfg=winogrande_eval_cfg)
]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment