C3.py 1.61 KB
Newer Older
Ezra-Yu's avatar
Ezra-Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import C3Dataset

C3_reader_cfg = dict(
    input_columns=[
        'question', 'content', 'choice0', 'choice1', 'choice2', 'choice3',
        'choices'
    ],
    output_column='label')

C3_infer_cfg = dict(
    prompt_template=dict(
        type=PromptTemplate,
        template={
            0:
            "阅读以下内容,选择合适的选项回答: {content} 问题:{question}\n 选项: -{choice0} -{choice1} -{choice2} -{choice3} 答: [MASK]-{choice0}",
            1:
            "阅读以下内容,选择合适的选项回答: {content} 问题:{question}\n 选项: -{choice0} -{choice1} -{choice2} -{choice3} 答: [MASK]-{choice1}",
            2:
            "阅读以下内容,选择合适的选项回答: {content} 问题:{question}\n 选项: -{choice0} -{choice1} -{choice2} -{choice3} 答: [MASK]-{choice2}",
            3:
            "阅读以下内容,选择合适的选项回答: {content} 问题:{question}\n 选项: -{choice0} -{choice1} -{choice2} -{choice3} 答: [MASK]-{choice3}",
        }),
    retriever=dict(type=ZeroRetriever),
    inferencer=dict(type=PPLInferencer))

C3_eval_cfg = dict(evaluator=dict(type=AccEvaluator))

C3_datasets = [
    dict(
        type=C3Dataset,
        abbr='C3',
        path='./data/CLUE/C3/dev_0.json',
        reader_cfg=C3_reader_cfg,
        infer_cfg=C3_infer_cfg,
        eval_cfg=C3_eval_cfg)
]