openflamingo_mmbench.py 2.51 KB
Newer Older
1
2
from opencompass.multimodal.models.openflamingo import OpenFlamingoMMBenchPromptConstructor

Yuan Liu's avatar
Yuan Liu committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# dataloader settings
val_pipeline = [
    dict(type='mmpretrain.PILToNumpy'),
    dict(type='mmpretrain.ResizeEdge',
         scale=224,
         interpolation='bicubic',
         backend='pillow'),
    dict(type='CenterCrop', crop_size=(224, 224)),
    dict(type='mmpretrain.PackInputs',
         algorithm_keys=[
             'question', 'options', 'category', 'l2-category', 'index',
             'context', 'options_dict'
         ])
]

dataset = dict(type='opencompass.MMBenchDataset',
               data_file='data/mmbench/mmbench_test_20230712.tsv',
               pipeline=val_pipeline)

22
openflamingo_mmbench_dataloader = dict(
Yuan Liu's avatar
Yuan Liu committed
23
24
25
26
27
28
29
30
31
    batch_size=1,
    num_workers=4,
    dataset=dataset,
    sampler=dict(type='DefaultSampler', shuffle=False),
    collate_fn=dict(type='default_collate'),
    persistent_workers=True,
)

# model settings
32
openflamingo_mmbench_model = dict(
Yuan Liu's avatar
Yuan Liu committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    type='openflamingo',
    data_preprocessor=dict(
        type='mmpretrain.MultiModalDataPreprocessor',
        mean=[122.770938, 116.7460125, 104.09373615],
        std=[68.5005327, 66.6321579, 70.32316305],
        to_rgb=True,
    ),
    tokenizer=dict(type='mmpretrain.LlamaTokenizer',
                   name_or_path='decapoda-research/llama-7b-hf'),
    vision_encoder=dict(
        type='mmpretrain.VisionTransformer',
        arch='l',
        patch_size=14,
        pre_norm=True,
        norm_cfg=dict(type='LN', eps=1e-5),
        layer_cfgs=dict(act_cfg=dict(type='mmpretrain.QuickGELU')),
        final_norm=False,
        out_type='raw',
        pretrained=  # noqa: E251
        '/path/to/vision/encoder',  # noqa
    ),
    lang_encoder=dict(
        base=dict(type='mmpretrain.AutoModelForCausalLM',
                  name_or_path=
                  'decapoda-research/llama-7b-hf',
                  local_files_only=True),
        adapter=dict(type='mmpretrain.FlamingoLMAdapter',
                     vis_hidden_size=1024,
                     cross_attn_every_n_layers=4,
                     use_media_placement_augmentation=False),
    ),
64
    task='vqa',
Yuan Liu's avatar
Yuan Liu committed
65
    generation_cfg=dict(num_beams=3, max_new_tokens=20, length_penalty=-2.0),
66
    prompt_constructor=dict(type=OpenFlamingoMMBenchPromptConstructor)
Yuan Liu's avatar
Yuan Liu committed
67
68
69
)

# evaluation settings
70
openflamingo_mmbench_evaluator = [
Yuan Liu's avatar
Yuan Liu committed
71
72
73
74
75
76
77
    dict(
        type='opencompass.DumpResults',
        save_path=  # noqa: E251
        'work_dirs/9b-flamingo/9b-flamingo-mmbench.xlsx')
]

openflamingo_load_from = '/path/to/pretrained/weights'  # noqa