SuperGLUE_WSC_ppl_cbf31c.py 1.45 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import WSCDataset_V3

WSC_reader_cfg = dict(
    input_columns=["span1", "span2", "text"],
    output_column="label",
)

WSC_infer_cfg = dict(
    prompt_template=dict(
        type=PromptTemplate,
        template={
            'A':
            dict(round=[
                dict(
                    role="HUMAN",
                    prompt="Passage: {text}\nDoes the pronoun # {span2} # refer to * {span1} *?\nA. Yes\nB. No\nAnseer: "
                ),
                dict(role='BOT', prompt='A'),
            ]),
            'B':
            dict(round=[
                dict(
                    role="HUMAN",
                    prompt="Passage: {text}\nDoes the pronoun # {span2} # refer to * {span1} *?\nA. Yes\nB. No\nAnseer: "
                ),
                dict(role='BOT', prompt='B'),
            ]),
        },
    ),
    retriever=dict(type=ZeroRetriever),
    inferencer=dict(type=PPLInferencer),
)

WSC_eval_cfg = dict(evaluator=dict(type=AccEvaluator), )

WSC_datasets = [
    dict(
        abbr="WSC",
        type=WSCDataset_V3,
        path="./data/SuperGLUE/WSC/val.jsonl",
        reader_cfg=WSC_reader_cfg,
        infer_cfg=WSC_infer_cfg,
        eval_cfg=WSC_eval_cfg,
    )
]