eval_internlm_chat_turbomind_tis.py 1.45 KB
Newer Older
1
2
3
4
5
6
7
8
from mmengine.config import read_base
from opencompass.models.turbomind_tis import TurboMindTisModel

with read_base():
    # choose a list of datasets
    from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
    from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
    from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets
Ke Bao's avatar
Ke Bao committed
9
    from .datasets.SuperGLUE_WSC.SuperGLUE_WSC_gen_7902a7 import WSC_datasets
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
    from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets
    from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
    from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets
    from .datasets.race.race_gen_69ee4f import race_datasets
    from .datasets.crowspairs.crowspairs_gen_381af0 import crowspairs_datasets
    # and output the results in a choosen format
    from .summarizers.medium import summarizer

datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])


meta_template = dict(
    round=[
        dict(role='HUMAN', begin='<|User|>:', end='\n'),
        dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
    ],
    eos_token_id=103028)

models = [
    dict(
        type=TurboMindTisModel,
        abbr='internlm-chat-20b-turbomind',
        path="internlm",
        tis_addr='0.0.0.0:33337',
        max_out_len=100,
        max_seq_len=2048,
        batch_size=8,
        meta_template=meta_template,
        run_cfg=dict(num_gpus=1, num_procs=1),
    )
]