eval_internlm_chat_turbomind.py 5.32 KB
Newer Older
1
2
3
4
5
6
7
from mmengine.config import read_base
from opencompass.models.turbomind import TurboMindModel


with read_base():
    # choose a list of datasets
    from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
8
9
10
11
    # from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
    # from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets
    # from .datasets.SuperGLUE_WSC.SuperGLUE_WSC_gen_7902a7 import WSC_datasets
    # from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets
12
    from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
13
14
    # from .datasets.race.race_gen_69ee4f import race_datasets
    # from .datasets.crowspairs.crowspairs_gen_381af0 import crowspairs_datasets
15
16
17
    # and output the results in a choosen format
    from .summarizers.medium import summarizer

18

19
20
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])

21
22
23
24
25
internlm_meta_template = dict(round=[
    dict(role='HUMAN', begin='<|User|>:', end='\n'),
    dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
],
                              eos_token_id=103028)
26

27
llama2_meta_template = dict(
28
    round=[
29
30
        dict(role='HUMAN', begin='[INST] ', end=' [/INST]'),
        dict(role='BOT', generate=True),
31
    ],
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    eos_token_id=2)

qwen_meta_template = dict(round=[
    dict(role='HUMAN', begin='\n<|im_start|>user\n', end='<|im_end|>'),
    dict(role='BOT',
         begin='\n<|im_start|>assistant\n',
         end='<|im_end|>',
         generate=True)
    ])

baichuan2_meta_template = dict(round=[
    dict(role='HUMAN', begin='<reserved_106>'),
    dict(role='BOT', begin='<reserved_107>', generate=True)
    ])
46
47

# config for internlm-chat-7b
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
internlm_chat_7b = dict(
    type=TurboMindModel,
    abbr='internlm-chat-7b-turbomind',
    path='./turbomind',
    max_out_len=100,
    max_seq_len=2048,
    batch_size=32,
    concurrency=32,
    meta_template=internlm_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)

internlm_chat_7b_w4 = dict(
    type=TurboMindModel,
    abbr='internlm-chat-7b-w4-turbomind',
    path='./turbomind',
    max_out_len=100,
    max_seq_len=2048,
    batch_size=32,
    concurrency=32,
    meta_template=internlm_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)
71
72

# config for internlm-chat-7b-w4kv8 model
73
74
75
76
77
78
79
80
81
82
83
internlm_chat_7b_w4kv8 = dict(
    type=TurboMindModel,
    abbr='internlm-chat-7b-w4kv8-turbomind',
    path='./turbomind',
    max_out_len=100,
    max_seq_len=2048,
    batch_size=32,
    concurrency=32,
    meta_template=internlm_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)
84
85

# config for internlm-chat-20b
86
87
88
89
90
91
92
93
94
95
96
internlm_chat_20b = dict(
    type=TurboMindModel,
    abbr='internlm-chat-20b-turbomind',
    path='./turbomind',
    max_out_len=100,
    max_seq_len=2048,
    batch_size=8,
    concurrency=8,
    meta_template=internlm_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)
97
98

# config for internlm-chat-20b-w4 model
99
100
101
102
103
104
105
106
107
108
109
internlm_chat_20b_w4 = dict(
    type=TurboMindModel,
    abbr='internlm-chat-20b-w4-turbomind',
    path='./turbomind',
    max_out_len=100,
    max_seq_len=2048,
    batch_size=16,
    concurrency=16,
    meta_template=internlm_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)
110
111

# config for internlm-chat-20b-w4kv8 model
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
internlm_chat_20b_w4kv8 = dict(
    type=TurboMindModel,
    abbr='internlm-chat-20b-w4kv8-turbomind',
    path='./turbomind',
    max_out_len=100,
    max_seq_len=2048,
    batch_size=16,
    concurrency=16,
    meta_template=internlm_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)

# config for llama2-chat-7b
llama2_chat_7b = dict(
    type=TurboMindModel,
    abbr='llama2-chat-7b-turbomind',
    path='./turbomind',
    max_out_len=100,
    max_seq_len=2048,
    batch_size=16,
    concurrency=32,
    meta_template=llama2_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)

# config for llama2-chat-13b
llama2_chat_13b = dict(
    type=TurboMindModel,
    abbr='llama2-chat-13b-turbomind',
    path='./turbomind',
    max_out_len=100,
    max_seq_len=2048,
    batch_size=16,
    concurrency=16,
    meta_template=llama2_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)

# config for llama2-chat-70b
llama2_chat_70b = dict(
    type=TurboMindModel,
    abbr='llama2-chat-70b-turbomind',
    path='./turbomind',
    max_out_len=100,
    max_seq_len=2048,
    batch_size=8,
    concurrency=8,
    meta_template=llama2_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)

# config for qwen-chat-7b
qwen_chat_7b = dict(
    type=TurboMindModel,
    abbr='qwen-chat-7b-turbomind',
    path='./turbomind',
    max_out_len=100,
    max_seq_len=2048,
    batch_size=16,
    concurrency=32,
    meta_template=qwen_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)

# config for qwen-chat-7b
qwen_chat_14b = dict(
    type=TurboMindModel,
    abbr='qwen-chat-14b-turbomind',
    path='./turbomind',
    max_out_len=100,
    max_seq_len=2048,
    batch_size=16,
    concurrency=32,
    meta_template=qwen_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)

# config for baichuan2-chat-7b
baichuan2_chat_7b = dict(
    type=TurboMindModel,
    abbr='baichuan2-chat-7b-turbomind',
    path='./turbomind',
    max_out_len=100,
    max_seq_len=2048,
    batch_size=16,
    concurrency=32,
    meta_template=baichuan2_meta_template,
    run_cfg=dict(num_gpus=1, num_procs=1),
)

models = [internlm_chat_20b]