README.md 6.72 KB
Newer Older
Tong Gao's avatar
Tong Gao committed
1
2
3
4
5
6
<div align="center">
  <img src="docs/en/_static/image/logo.svg" width="500px"/>
  <br />
  <br />

[![docs](https://readthedocs.org/projects/opencompass/badge/?version=dev-1.x)](https://opencompass.readthedocs.io/en/dev-1.x/?badge=dev-1.x)
Hubert's avatar
Hubert committed
7
[![license](https://img.shields.io/github/license/InternLM/opencompass.svg)](https://github.com/InternLM/opencompass/blob/main/LICENSE)
Tong Gao's avatar
Tong Gao committed
8
9
[![PyPI](https://badge.fury.io/py/opencompass.svg)](https://pypi.org/project/opencompass/)

gaotongxiao's avatar
gaotongxiao committed
10
[🌐Website](https://opencompass.org.cn/) |
Tong Gao's avatar
Tong Gao committed
11
12
13
14
15
16
17
18
[📘Documentation](https://opencompass.readthedocs.io/en/latest/) |
[🛠️Installation](https://opencompass.readthedocs.io/en/latest/get_started/install.html) |
[🤔Reporting Issues](https://github.com/InternLM/opencompass/issues/new/choose)

English | [简体中文](README_zh-CN.md)

</div>

Tong Gao's avatar
Tong Gao committed
19
Welcome to **OpenCompass**!
Tong Gao's avatar
Tong Gao committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Just like a compass guides us on our journey, OpenCompass will guide you through the complex landscape of evaluating large language models. With its powerful algorithms and intuitive interface, OpenCompass makes it easy to assess the quality and effectiveness of your NLP models.

## Introduction

OpenCompass is a one-stop platform for large model evaluation, aiming to provide a fair, open, and reproducible benchmark for large model evaluation. Its main features includes:

- **Comprehensive support for models and datasets**: Pre-support for 20+ HuggingFace and API models, a model evaluation scheme of 50+ datasets with about 300,000 questions, comprehensively evaluating the capabilities of the models in five dimensions.

- **Efficient distributed evaluation**: One line command to implement task division and distributed evaluation, completing the full evaluation of billion-scale models in just a few hours.

- **Diversified evaluation paradigms**: Support for zero-shot, few-shot, and chain-of-thought evaluations, combined with standard or dialogue type prompt templates, to easily stimulate the maximum performance of various models.

- **Modular design with high extensibility**: Want to add new models or datasets, customize an advanced task division strategy, or even support a new cluster management system? Everything about OpenCompass can be easily expanded!

- **Experiment management and reporting mechanism**: Use config files to fully record each experiment, support real-time reporting of results.

## Leaderboard

We provide [OpenCompass Leaderbaord](https://opencompass.org.cn/rank) for community to rank all public models and API models. If you would like to join the evaluation, please provide the model repository URL or a standard API interface to the email address `opencompass@pjlab.org.cn`.

Songyang Zhang's avatar
Songyang Zhang committed
41
[![image](https://github.com/InternLM/OpenCompass/assets/7881589/475b0c8e-28b8-43e9-b2fd-4dd558e22491)](https://opencompass.org.cn/rank)
Tong Gao's avatar
Tong Gao committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

## Dataset Support

<table align="center">
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Language</b>
      </td>
      <td>
        <b>Knowledge</b>
      </td>
      <td>
        <b>Reasoning</b>
      </td>
      <td>
Songyang Zhang's avatar
Songyang Zhang committed
58
        <b>Comprehensive Examination</b>
Tong Gao's avatar
Tong Gao committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
      </td>
      <td>
        <b>Understanding</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
<details open>
<summary><b>Word Definition</b></summary>

- WiC
- SummEdits

</details>

<details open>
<summary><b>Idiom Learning</b></summary>

- CHID

</details>

<details open>
<summary><b>Semantic Similarity</b></summary>

- AFQMC
- BUSTM

</details>

<details open>
<summary><b>Coreference Resolution</b></summary>

- CLUEWSC
- WSC
- WinoGrande

</details>

<details open>
<summary><b>Translation</b></summary>

- Flores

</details>
      </td>
      <td>
<details open>
<summary><b>Knowledge Question Answering</b></summary>

- BoolQ
- CommonSenseQA
- NaturalQuestion
- TrivialQA

</details>

<details open>
<summary><b>Multi-language Question Answering</b></summary>

- TyDi-QA

</details>
      </td>
      <td>
<details open>
<summary><b>Textual Entailment</b></summary>

- CMNLI
- OCNLI
- OCNLI_FC
- AX-b
- AX-g
- CB
- RTE

</details>

<details open>
<summary><b>Commonsense Reasoning</b></summary>

- StoryCloze
- StoryCloze-CN (coming soon)
- COPA
- ReCoRD
- HellaSwag
- PIQA
- SIQA

</details>

<details open>
<summary><b>Mathematical Reasoning</b></summary>

- MATH
- GSM8K

</details>

<details open>
<summary><b>Theorem Application</b></summary>

- TheoremQA

</details>

<details open>
<summary><b>Code</b></summary>

- HumanEval
- MBPP

</details>

<details open>
<summary><b>Comprehensive Reasoning</b></summary>

- BBH

</details>
      </td>
      <td>
<details open>
<summary><b>Junior High, High School, University, Professional Examinations</b></summary>

- GAOKAO-2023
- CEval
- AGIEval
- MMLU
- GAOKAO-Bench
- MMLU-CN (coming soon)
- ARC

</details>
      </td>
      <td>
<details open>
<summary><b>Reading Comprehension</b></summary>

- C3
- CMRC
- DRCD
- MultiRC
- RACE

</details>

<details open>
<summary><b>Content Summary</b></summary>

- CSL
- LCSTS
- XSum

</details>

<details open>
<summary><b>Content Analysis</b></summary>

- EPRSTMT
- LAMBADA
- TNEWS

</details>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>

## Model Support

<table align="center">
  <tbody>
    <tr align="center" valign="bottom">
      <td>
Songyang Zhang's avatar
Songyang Zhang committed
236
        <b>Open-source Models</b>
Tong Gao's avatar
Tong Gao committed
237
238
239
240
      </td>
      <td>
        <b>API Models</b>
      </td>
Songyang Zhang's avatar
Songyang Zhang committed
241
      <!-- <td>
Tong Gao's avatar
Tong Gao committed
242
        <b>Custom Models</b>
Songyang Zhang's avatar
Songyang Zhang committed
243
      </td> -->
Tong Gao's avatar
Tong Gao committed
244
245
246
    </tr>
    <tr valign="top">
      <td>
Hubert's avatar
Hubert committed
247

Tong Gao's avatar
Tong Gao committed
248
249
250
251
252
253
254
255
256
257
258
259
- InternLM
- LLaMA
- Vicuna
- Alpaca
- Baichuan
- WizardLM
- ChatGLM-6B
- ChatGLM2-6B
- MPT
- Falcon
- TigerBot
- MOSS
gaotongxiao's avatar
gaotongxiao committed
260
- ...
Tong Gao's avatar
Tong Gao committed
261
262
263
264

</td>
<td>

Songyang Zhang's avatar
Songyang Zhang committed
265
- OpenAI
Tong Gao's avatar
Tong Gao committed
266
267
268
269
270
271
- Claude (coming soon)
- PaLM (coming soon)
- ……

</td>

Tong Gao's avatar
Tong Gao committed
272
<!--
Tong Gao's avatar
Tong Gao committed
273
- GLM
gaotongxiao's avatar
gaotongxiao committed
274
- ...
Tong Gao's avatar
Tong Gao committed
275

Songyang Zhang's avatar
Songyang Zhang committed
276
</td> -->
Tong Gao's avatar
Tong Gao committed
277

Tong Gao's avatar
Tong Gao committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
</tr>
  </tbody>
</table>

## Installation

Below are the steps for quick installation. Some third-party features may require additional steps to work properly, for detailed steps please refer to the [Installation Guide](https://opencompass.readthedocs.io/en/latest/get_started.html).

```Python
conda create --name opencompass python=3.8 pytorch torchvision -c pytorch -y
conda activate opencompass
git clone https://github.com/InternLM/opencompass opencompass
cd opencompass
pip install -e .
# Download dataset to data/ folder
Tong Gao's avatar
Tong Gao committed
293
294
wget https://github.com/InternLM/opencompass/releases/download/0.1.0/OpenCompassData.zip
unzip OpenCompassData.zip
Tong Gao's avatar
Tong Gao committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
```

## Evaluation

Please read the [Quick Start](https://opencompass.readthedocs.io/en/latest/get_started.html) to learn how to run an evaluation task.

## Acknowledgements

Some code in this project is cited and modified from [OpenICL](https://github.com/Shark-NLP/OpenICL).

## Citation

```bibtex
@misc{2023opencompass,
    title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
    author={OpenCompass Contributors},
    howpublished = {\url{https://github.com/InternLM/OpenCompass}},
    year={2023}
}
```